Overview on Global Applications of Large-Span Storm Surge Barriers

WANG Zheng-zhong, XU Chao

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (12) : 1-11.

PDF(3018 KB)
PDF(3018 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (12) : 1-11. DOI: 10.11988/ckyyb.20180890
SPECIAL CONTRIBUTION

Overview on Global Applications of Large-Span Storm Surge Barriers

  • WANG Zheng-zhong1,2, XU Chao1,2
Author information +
History +

Abstract

With the global climate warming, extreme climate events have been frequent in recent years, accompanied by sea level rise and intensified storm surges in coastal areas. Under such background, innovating the structural form of storm surge barrier, which is an important barrier for urban safety of coastal cities, and improving the flood control capacity of coastal cities have been hot spot for scientific researchers. In this paper, the necessity of storm surge barriers construction is expounded from the impact of coastal flooding on coastal city safety; the innovative structural features, advantages and shortcomings, applicability and development status of various large-scale tidal gates are illustrated according to some engineering application examples of large-span new storm surge barriers built in coastal areas at home and abroad. Finally, prospects are drawn from the aspects of ecological construction of coastal cities, design and specification of new tidal gates, and control of operation management systems. The research is expected to provide reference for the construction of storm surge barriers in the coastal estuary area of China.

Key words

storm surge barriers / climate change / coastal flood / engineering application / new structural form

Cite this article

Download Citations
WANG Zheng-zhong, XU Chao. Overview on Global Applications of Large-Span Storm Surge Barriers[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(12): 1-11 https://doi.org/10.11988/ckyyb.20180890

References

[1] HUNT G. Intergovernmental Panel on Climate Change (IPCC) Report-Media Release 27 September 2013[R] . Australia: The Australia Government, 2013.
[2] CHURCH J A, UNNISKISHNAN A S. Sea-level Rise by 2100[J] . Science, 2013, 342(6165):1445.
[3] LIN N, EMANUEL K, OPPENHEIMER M, et al. Physically Based Assessment of Hurricane Surge Threat under Climate Change[J] . Nature Climate Change, 2012, 2(6):462-467.
[4] MUIS S, VERLAAN M, NICHOLLS R J, et al. A Comparison of Two Global Datasets of Extreme Sea Levels and Resulting Flood Exposure[J] . Earths Future, 2017, 5(4): 379-392.
[5] VOUSDOUKAS M I, VOUKOUVALAS E, ANNUNZIATO A, et al. Projections of Extreme Storm Surge Levels along Europe[J] . Climate Dynamics, 2016, 47(9/10):3171-3190.
[6] PERRS-PIGGOTT M I B, MUIR-WOOD R. What Constitutes a Global Baseline for Worldwide Casualties from Catastrophes?[J] . International Journal of Disaster Risk Reduction, 2016, 17:123-127.
[7] IRISH J L, SLEATH A, CIALONE M A, et al. Simulations of Hurricane Katrina (2005) under Sea Level and Climate Conditions for 1900[J] . Climatic Change, 2014, 122(4):635-649.
[8] XIAN S, LIN N, HATZIKYRIAKOU A. Storm Surge Damage to Residential Areas: A Quantitative Analysis for Hurricane Sandy in Comparison with FEMA Flood Map[J] . Natural Hazards, 2015, 79(3):1867-1888.
[9] SMALL C, NICHOLLS R J. A Global Analysis of Human Settlement in Coastal Zones[J] . Journal of Coastal Research, 2003, 19(3):584-599.
[10] NICHOLLS R J. Coastal Flooding and Wetland Loss in the 21st Century: Changes under the SRES Climate and Socio-economic Scenarios[J] . Global Environmental Change, 2004, 14(1):69-86.
[11] HANSON S, NICHOLLS R J, RANGER N, et al. A Global Ranking of Port Cities with High Exposure to Climate Extremes[J] . Climatic Change, 2011, 104(1):89-111.
[12] HOFFMAN R N, DAILEY P, HOPSCH S, et al. An Estimate of Increases in Storm Surge Risk to Property from Sea Level Rise in the First Half of the Twenty-First Century[J] . Weather, Climate, and Society, 2012, 2(4):271-293.
[13] JONKMAN S N, HILLEN M M, NICHOLLS R J, et al. Costs of Adapting Coastal Defenses to Sea-Level Rise- New Estimates and Their Implications[J] . Journal of Coastal Research, 2013, 29(5):1212-1226.
[14] 康 蕾, 马 丽, 刘 毅. 珠江三角洲地区未来海平面上升及风暴潮增水的耕地损失预测[J] . 地理学报, 2015, 70(9):1375-1389.
[15] FENG J L, VON STORCH H, JIANG W S, et al. Assessing Changes in Extreme Sea Levels along the Coast of China[J] . Journal of Geophysical Research Oceans, 2015, 120(12), doi: 10.1002/2015JC011336.
[16] FANG J, LIU W, YANG S, et al. Spatial-temporal Changes of Coastal and Marine Disasters Risks and Impacts in Mainland China[J] . Ocean & Coastal Management, 2017, 139(10):125-140.
[17] LIU J, WEN J, HUANG Y, et al. Human Settlement and Regional Development in the Context of Climate Change: A Spatial Analysis of Low Elevation Coastal Zones in China[J] . Mitigation & Adaptation Strategies for Global Change, 2015, 20(4):527-546.
[18] WU T, HOU X Y, XU X L. Spatio-temporal Characteristics of the Mainland Coastline Utilization Degree over the Last 70 Years in China[J] . Ocean & Coastal Management, 2014, 98:150-157.
[19] 金 海, 王建平, 姜付仁,等. 国外大型挡潮闸工程的经验借鉴[J] . 中国水利, 2016,(10):56-60.
[20] LIE H J, CHO C H, LEE S, et al. Changes in Marine Environment by a Large Coastal Development of the Saemangeum Reclamation Project in Korea[J] . Ocean & Polar Research, 2008, 30(4):475-484.
[21] ZHU X, LINHAM M, NICHOLLS R J, et al. Technologies for Climate Change Adaptation: Coastal Erosion and Flooding.[J] . Advances in Agronomy, 2011, 121: 47-115.
[22] DIJK A, VAN DER ZIEL F. MultifunctioneleBeweegbareWaterkeringen[M] . Delft, Netherlands: Royal Haskoning, 2010.
[23] 严根华. 我国大跨度闸门应用趋势与抗振对策[J] . 水利水运工程学报, 2009,(4):134-142.
[24] Rijkswaterstaat. Basic Documentation Maeslantkering Barrier[R] . Utrecht, Netherlands: Rijkswaterstaat, 2012.
[25] 翁义孟, 杨德发. 荷兰梅斯兰特弧门挡潮闸介绍——荷兰考察报告之二[J] . 人民珠江, 1992,(1):46-47.
[26] OSTERIN V, SHCHEKACHIKHINV I. St. Petersburg Flood Protection Barrier System: First Years of Operation[J] . Power Technology & Engineering, 2017, 51(4):371-376.
[27] 徐泽平, 郭 军. 俄罗斯圣彼得堡防潮工程建设的若干历史经验[J] . 中国水利水电科学研究院学报, 2007, 5(4):305-310.
[28] RIGO P. Roll Motion of a Floating Storm surge Barrier[J] . Journal of Hydroscience& Hydraulic Engineering, 1992: 27-36.
[29] MILLER D, DESOTO-DUNCAN A, HERTZLER B. Hurricane Katrina and the Inner Harbor Navigation Canal Lake Borgne Surge Barrier[J] . Houille Blanche-revue Internationale de L’eau, 2013, 18(2):5-11.
[30] RYAN J, WEINSTEIN R A, PEARSON C E. Houma Navigation Canal Deepening Project Terrebonne Parish, Louisiana: Cultural Resources Literature Search, Records Review and Research Design[R] . Louisiana: Coastal Environments, Inc., 2005.
[31] ROSATI J D, LAWTON C. Channel Shoaling with Deepening of Houma Navigation Channel at Cat Island Pass, Louisiana[J] . Journal of Coastal Research, 2011, 2(4):256-265.
[32] 傅宗甫, 严忠民. 新型浮体闸的稳定性分析[J] . 水利学报, 2005, 36(8):1014-1018.
[33] SIVERD C, ARECCO P, LI Y, et al. Conceptual Design of a High Discharge Barrier in the Closed-open-super Dike Ring “Rijnmond”(Abstract)[C] ∥Proceedings of the 2015 Conference on Smart Rivers, Buenos Aires, Argentina, September 7-11, 2015.
[34] BULKAEN D. Berendrecht Gates (Belgium)[R] . Belgium: PIANC International Workshop, 2006.
[35] ROB H, BOSKE L B. The Impact of the New Panama Canal Locks on Texas Ports and the Texas Economy. No. FHWA/TX-17/5-6690-01-1.[R] . Texas: Center for Transportation Research, University of Texas at Austin, 2017.
[36] KORTLEVER W, VAN DER HOUT A, DE LOOR A. Hydraulic Studies of the Levelling System for the New Sea Lock at IJmuiden[J] . Wasserbauwerke-Vom Hydraulischen Entwurfbiszum Betrieb, 2015, 21: 31-38.
[37] OBERRECHT D, WURPTS A. Impact of Controlled Tidal Barrier Operation on Tidal Dynamics in the Ems Estuary[J] . Die Küste, 2014, (8): 427-433.
[38] YOON H S, YOO C I, NA W B, et al. Geomorphologic Evolution and Mobility of Sand Barriers in the Nakdong Estuary, South Korea[J] . Journal of Coastal Research, 2007, 23(1): 358-363.
[39] 朱世哲, 罗尧治. 新型双拱钢管结构闸门的应用与研究[J] . 土木工程学报, 2008, 41(1):35-41.
[40] MORANG A. Hurricane Barriers in New England and New Jersey: History and Status after Five Decades[J] . Journal of Coastal Research, 2016, 32(1):181-205.
[41] Deltawerken.Haringvliet Dam[EB/OL] . http:∥www.deltawerken.com/Haringvliet-Dam/327.html
[42] TAPPIN R G R, DOWLING P J, CLARK P J.Design and Model Testing of the Thames Barrier Gates[J] . Structural Engineer, 1984, 62(4):115-124.
[43] KENDRICK M. The Thames Barrier[J] . Landscape and Urban Planning, 1988, 16(1/2): 57-68.
[44] RIGO P, ABDELNOUR R, BULKAEN D, et al. Design of Movable Weirs and Storm Surge Barriers[R] .Brussels:PIANC,2006.
[45] BJORNBERG K E.Rational Goals in Engineering Design:The Venice Dams[M] ∥Norms in Technology, Dordrecht: Springer Science & Business Media B.V., 2013: 83-99.
[46] FICE J L, SCOTTI A. The Flood Prevention Scheme of Venice: Experimental Module[J] . Water & Environment Journal, 2010, 4(1):70-77.
[47] SEMINARA G, LANZONI S, CECCONI G. Coastal Wetlands at Risk: Learning from Venice and New Orleans[J] . Ecohydrology & Hydrobiology, 2011, 11(3/4):183-202.
[48] CAVALLARO L, LUPPA C, FOTI E. Effect of Partial Use of Venice Flood Barriers[J] . Journal of Marine Science and Engineering, 2017, 5(4): 58.
[49] JONGELING T, ROVEKAMP N H. Storm Surge Barrier Ramspol[R] . The Netherlands: International Network for Storm Surge Barriers, 1999.
[50] VAN DER VALK K. Life Cycle Costs: A Comparison Between Inflatable and Traditional Barriers[D] . Delft, The Netherlands: Delft University of Technology, 2014.
PDF(3018 KB)

Accesses

Citation

Detail

Sections
Recommended

/