Sulfate Resistance of Steel Slag Powder PVA Fiber-Reinforced Cement Composite Material

SU Jun, FAN Zi-kang, CAI Xin-hua, XIAO Shu

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (11) : 172-180.

PDF(2144 KB)
PDF(2144 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (11) : 172-180. DOI: 10.11988/ckyyb.20230603

Sulfate Resistance of Steel Slag Powder PVA Fiber-Reinforced Cement Composite Material

Author information +
History +

Abstract

To explore the reuse of steel slag powder in PVA-ECC (Polyvinyl Alcohol Engineered Cementitious Composite), we produced PVA-ECC samples by incorporating steel slag powder at various mass fractions. We measured the mass change, compressive strength, and tensile performance of the test samples in Na2SO4 solution (with a mass fraction of 5%) during dry-wet cycle accelerated sulfate attack tests, cubic compressive strength tests, and axial tensile tests. By microstructural and phase analysis using scanning electron microscopy (SEM) and X-ray diffraction (XRD) meter, we examined the influence of steel slag powder content on the sulfate resistance of PVA-ECC. Results indicate that when the steel slag powder content in PVA-ECC reaches 20%, the mass loss remains lower than that of the reference group. PVA-ECC with a low dosage of steel slag powder demonstrates sound corrosion resistance, with compressive and corrosion resistance coefficients of 1.13, 1.02, and 0.96 for the S20 group, respectively. PVA-ECC specimens containing steel slag powder exhibited multiple cracks; however, the addition of steel slag powder enhanced tensile strength, with a maximum increase of 31.4% observed in the S40 group. The inclusion of an appropriate amount of steel slag powder effectively mitigates corrosion damage, with no significant material deterioration observed within the studied age range when the addition does not exceed 60%.

Key words

PVA fiber / steel slag powder / sulfate attack / dry-wet cycle / tensile strength / durability performance

Cite this article

Download Citations
SU Jun , FAN Zi-kang , CAI Xin-hua , et al. Sulfate Resistance of Steel Slag Powder PVA Fiber-Reinforced Cement Composite Material[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(11): 172-180 https://doi.org/10.11988/ckyyb.20230603

References

[1]
杨波, 史林. 钢渣混凝土研究现状分析[J]. 中国新技术新产品, 2011(7): 11-12.
(YANG Bo, SHI Lin. Research Status of Steel Slag Powder Concrete[J]. China New Technologies and Products, 2011(7): 11-12. (in Chinese))
[2]
郑永超, 周钰沦, 房桂明, 等. 利用钢渣制备矿物掺合料对混凝土性能的影响[J]. 混凝土与水泥制品, 2020(7):87-91.
(ZHENG Yong-chao, ZHOU Yu-lun, FANG Gui-ming, et al. Preparation of Mineral Admixtures from Steel Slag and Its Effect on Concrete Performance[J]. China Concrete and Cement Products, 2020(7):87-91. (in Chinese))
[3]
陈苗苗, 冯春花, 李东旭. 钢渣作为混凝土掺合料的可行性研究[J]. 硅酸盐通报, 2011, 30(4): 751-754.
Abstract
适量掺加矿物掺合料可以降低混凝土结构的孔隙率,提高水化产物的致密性,有效降低氯离子的渗透性,提高混凝土的使用寿命.本文主要研究了钢渣作为掺合料单掺或复掺对混凝土Cl-渗透性能及力学性能的影响,并分析探讨了其影响机理.结果表明:一定量的钢渣和粉煤灰复掺可以较好的提高混凝土抗压强度;随着钢渣掺量的增加,混凝土坍落度降低,抗氯离子渗透性能逐渐下降;钢渣与粉煤灰复掺时,混凝土抗氯离子渗透性能增加;大掺量(钢渣、粉煤灰掺量50%)掺合料可以提高混凝土抗氯离子渗透性能.
(CHEN Miao-miao, FENG Chun-hua, LI Dong-xu. Research on Feasibility of Using Steel Slag as Mineral Admixture in Concrete[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 751-754. (in Chinese))
适量掺加矿物掺合料可以降低混凝土结构的孔隙率,提高水化产物的致密性,有效降低氯离子的渗透性,提高混凝土的使用寿命.本文主要研究了钢渣作为掺合料单掺或复掺对混凝土Cl-渗透性能及力学性能的影响,并分析探讨了其影响机理.结果表明:一定量的钢渣和粉煤灰复掺可以较好的提高混凝土抗压强度;随着钢渣掺量的增加,混凝土坍落度降低,抗氯离子渗透性能逐渐下降;钢渣与粉煤灰复掺时,混凝土抗氯离子渗透性能增加;大掺量(钢渣、粉煤灰掺量50%)掺合料可以提高混凝土抗氯离子渗透性能.
[4]
徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6): 45-60.
(XU Shi-lang, LI He-dong. A Review on the Development of Research and Application of Ultra High Toughness Cementitious Composites[J]. China Civil Engineering Journal, 2008, 41(6): 45-60. (in Chinese))
[5]
刘俊, 牛荻涛, 宋华. 掺合料对混凝土抗硫酸盐侵蚀性能的影响[J]. 混凝土, 2014(3): 79-83.
(LIU Jun, NIU Di-tao, SONG Hua. Influences Brought by Admixtures to the Sulfate Corrosion of Concrete[J]. Concrete, 2014(3): 79-83. (in Chinese))
[6]
高润东, 赵顺波, 李庆斌, 等. 干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究[J]. 土木工程学报, 2010, 43(2): 48-54.
(GAO Run-dong, ZHAO Shun-bo, LI Qing-bin, et al. Experimental Study of the Deterioration Mechanism of Concrete under Sulfate Attack in Wet-dry Cycles[J]. China Civil Engineering Journal, 2010, 43(2): 48-54. (in Chinese))
[7]
李亚丽, 贾慧娜. 钢渣粉和玄武岩纤维对硫氧镁水泥砂浆强度与耐久性能的影响[J]. 新型建筑材料, 2021, 48(3):102-106.
(LI Ya-li, JIA Hui-na. Effects of Steel Slag Powder and Basalt Fibre on Strength and Durability of Magnesium Oxysulfate Cement Mortar[J]. New Building Materials, 2021, 48(3): 102-106. (in Chinese))
[8]
费帆, 廖龙, 欧阳东. 钢渣矿渣复合对海工混凝土耐久性影响的试验研究[J]. 硅酸盐通报, 2016, 35(12):4133-4139.
Abstract
通过胶砂试验、混凝土抗氯离子渗透试验和混凝土抗硫酸盐侵蚀试验,研究了钢渣粉与矿渣粉复合掺入对混凝土海工耐久性能的影响.试验结果表明:钢渣粉和矿渣粉具有很好的复合强化效应,复合掺入后对混凝土抗氯离子渗透和抗硫酸盐侵蚀性能都有较好的改善作用.综合考虑钢渣矿渣的活性、混凝土的海工耐久性以及钢渣利用的最大化,海工混凝土中钢渣矿渣复合掺入的总量,可控制在胶凝材料总量的40%~50%,矿渣与钢渣的比控制在6∶4左右.这样可保证钢渣掺量较大的同时,混凝土的海工耐久性亦得到有效提升.
(FEI Fan, LIAO Long, OUYANG Dong. Effect of Steel Slag and Blast-furnace Slag Composite Admixture on Durability of Marine Concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4133-4139. (in Chinese))
通过胶砂试验、混凝土抗氯离子渗透试验和混凝土抗硫酸盐侵蚀试验,研究了钢渣粉与矿渣粉复合掺入对混凝土海工耐久性能的影响.试验结果表明:钢渣粉和矿渣粉具有很好的复合强化效应,复合掺入后对混凝土抗氯离子渗透和抗硫酸盐侵蚀性能都有较好的改善作用.综合考虑钢渣矿渣的活性、混凝土的海工耐久性以及钢渣利用的最大化,海工混凝土中钢渣矿渣复合掺入的总量,可控制在胶凝材料总量的40%~50%,矿渣与钢渣的比控制在6∶4左右.这样可保证钢渣掺量较大的同时,混凝土的海工耐久性亦得到有效提升.
[9]
乔宏霞, 何忠茂, 刘翠兰. 硫酸盐环境混凝土动弹性模量及微观研究[J]. 哈尔滨工业大学学报, 2008, 40(8):1302-1306.
(QIAO Hong-xia, HE Zhong-mao, LIU Cui-lan. Dynamic Elastic Modulus and Microstructure Study of Concrete in Sulfate Environment[J]. Journal of Harbin Institute of Technology, 2008, 40(8): 1302-1306. (in Chinese))
[10]
涂昆, 刘家祥, 邓侃. 钢渣粉和钢渣水泥的活性及水化机理研究[J]. 北京化工大学学报(自然科学版), 2015, 42(1): 62-68.
(TU Kun, LIU Jia-xiang, DENG Kan. Study of the Hydration Behaviour of Steel Slag and Steel Slag Cement Complex Powders[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2015, 42(1): 62-68. (in Chinese))
[11]
AFROZ M, PATNAIKUNI I, VENKATESAN S. Chemical Durability and Performance of Modified Basalt Fiber in Concrete Medium[J]. Construction and Building Materials, 2017, 154: 191-203.
[12]
董宜森. 硫酸盐侵蚀环境下混凝土耐久性能试验研究[D]. 杭州: 浙江大学, 2011.
(DONG Yi-sen. Experimental Research on the Durability of Concrete Exposed to Sulfate Environment[D]. Hangzhou: Zhejiang University, 2011. (in Chinese))
[13]
卢政, 居月, 王元纲, 等. 掺钢渣复合掺合料的高性能混凝土抗硫酸盐侵蚀性研究[J]. 林业工程学报, 2018, 3(2): 143-148.
(LU Zheng, JU Yue, WANG Yuan-gang, et al. Study on Sulfate Erosion Resistance of High Performance Concrete Mixed with Steel Slag Compound Admixture[J]. Journal of Forestry Engineering, 2018, 3(2): 143-148. (in Chinese))
[14]
孙家瑛. 钢渣微粉对混凝土抗压强度和耐久性的影响[J]. 建筑材料学报, 2005, 8(1): 63-66.
(SUN Jia-ying. Influence of Steel Slag Powder on Compressive Strength and Durability of Concrete[J]. Journal of Building Materials, 2005, 8(1): 63-66. (in Chinese))
[15]
杨钱荣, 杨全兵. 含钢渣复合掺合料对混凝土耐久性的影响[J]. 同济大学学报(自然科学版), 2010, 38(8):1200-1204.
(YANG Qian-rong, YANG Quan-bing. Effects of Compound Mineral Admixture with Steel Slag on Durability of Concrete[J]. Journal of Tongji University (Natural Science), 2010, 38(8): 1200-1204. (in Chinese))
[16]
LIU H, ZHANG Q, GU C, et al. Influence of Micro-cracking on the Permeability of Engineered Cementitious Composites[J]. Cement and Concrete Composites, 2016, 72: 104-113.
[17]
LIU H, ZHANG Q, LI V, et al. Durability Study on Engineered Cementitious Composites (ECC) under Sulfate and Chloride Environment[J]. Construction and Building Materials, 2017, 133: 171-181.
[18]
王振波, 孙鹏, 刘伟康, 等. 硫酸盐侵蚀下ECC轴拉力学性能与微观结构[J]. 华中科技大学学报(自然科学版), 2021, 49(7): 31-36.
(WANG Zhen-bo, SUN Peng, LIU Wei-kang, et al. Tensile Performance and Microstructure of ECC under Sulfate Attack[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(7): 31-36. (in Chinese))
[19]
韦选纯, 汤盛文, 何真, 等. 聚乙烯醇纤维增强钢渣粉-水泥复合材料基本力学性能及微观结构[J]. 复合材料学报, 2019, 36(8): 1918-1925.
(WEI Xuan-chun, TANG Sheng-wen, HE Zhen, et al. Mechanical and Microstructural Characteristics of Polyvinyl Alcohol Fiber Reinforced Cementitious Composites Containing Steel Slag Powder[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1918-1925. (in Chinese))
[20]
陈军. 早龄期混凝土水化进程及宏观与细微观性能相关性研究[D]. 杭州: 浙江大学, 2014.
(CHEN Jun. Hydration Process and Correlation of Macro-and Meso-/Micro-properties of Early-age Concrete[D]. Hangzhou: Zhejiang University, 2014. (in Chinese))
PDF(2144 KB)

Accesses

Citation

Detail

Sections
Recommended

/