The aim of this research is to compare and analyze the reinforcement effect and mechanism of different types of fibers. Four commonly used synthetic fibers, namely, basalt fiber, polypropylene fiber, polyester fiber, and glass fiber, were selected to prepare five groups of reinforced loess specimens for direct shear test by controlling water content, dry density, fiber length, and fiber content. Results demonstrated that: 1) before fiber reinforcement, the curves of shear stress versus shear displacement of loess displayed evident strain softening features; after fiber reinforcement, the strain softening turned into strain hardening. 2) Fibers escalated the shear strength of soil. Among the tested four fibers, basalt fiber has the best reinforcement effect by enhancing the cohesion and internal friction angle of soil by 52.03% and 24.30%, respectively, followed by polypropylene fiber with an increment by 45.94% and 16.01%, respectively. 3)The improvement of the cohesion of reinforced soil is related to the cohesive force of fiber-soil interface and the tensile strength of fiber itself; the increase of internal friction angle is mainly related to the interface friction between fiber and soil. Basalt fiber is of rough surface and large tensile strength, which significantly improves the shear properties of reinforced soil.
Key words
synthetic fiber /
reinforced soil /
shear strength /
tensile strength /
sliding friction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 刘宝生,唐朝生,李 建,等. 纤维加筋土工程性质研究进展[J].工程地质学报,2013,21(4):540-547.
[2] FALORCA I, PINTO M. Effect of Short, Randomly Distributed Polypropylene Microfibres on Shear Strength Behaviour of Soils[J]. Geosynthetics International, 2011, 18(1), doi: 10.1680/GEIN.2011.18.1.2.
[3] 介玉新,李广信,陈 轮.纤维加筋土和素土边坡的离心模型试验研究[J].岩土工程学报,1998,20(4):15-18.
[4] 孔玉侠,沈飞凡,王慧娟.聚丙烯纤维加筋砂土的剪胀特性[J].岩土工程学报,2018,40(12):2249-2256.
[5] 陈 乐,刘志彬,周书中.聚丙烯纤维加筋对高岭土固结压缩特性影响试验研究[J].岩土力学,2015,36(增刊1):372-376.
[6] 胡文乐,何朋立,刘 华.玄武岩纤维黄土抗剪强度变化规律与最优配合比分析[J].中国地质灾害与防治学报,2019,30(4):92-97.
[7] 尤 波,徐洪钟,董金梅.玄武岩纤维加筋膨胀土三轴试验研究[J].防灾减灾工程学报,2015,35(4):503-507,514.
[8] 高 磊,胡国辉,杨 晨,等. 玄武岩纤维加筋黏土的剪切强度特性[J].岩土工程学报,2016,38(增刊1):231-237.
[9] CHEN C, ZHANG G, ZORNBERG J G, et al. Interface Bond Behavior of Tensioned Glass Fiber-reinforced Polymer (GFRP) Tendons Embedded in Cemented Soils[J]. Construction and Building Materials, 2020,263: 120132.
[10] 李丽华,万 畅,刘永莉,等. 玻璃纤维加筋砂土剪切强度特性研究[J].武汉大学学报:工学版,2017,50(1):102-106.
[11] 胡 达,璩继立.纤维素纤维加筋土的力学特性[J].公路交通科技,2018,35(1):22-27,35.
[12] JTG E40—2007,公路土工试验规程[S].北京:人民交通出版社,2007.
[13] 高 磊,胡国辉,陈永辉,等.玄武岩纤维加筋黏土三轴试验研究[J].岩土工程学报,2017,39(增刊1):198-203.
[14] TANG C S, SHI B, GAO W, et al. Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil[J]. Geotextiles and Geomembranes, 2006, 25(3): 194--202.
[15] 璩继立,胡晨凯,赵超男.玄武岩纤维和纳米二氧化硅加筋上海黏土的抗剪强度试验研究[J].水资源与水工程学报,2017,28(3):186-192.