Structural Safety Monitoring System and Layout Design for Long Distance Tunnel Crossing Active Fault Zone

ZHANG Yu-ting, WANG Yi-shen, ZHAO Li-peng, HUANG Shu-ling, HE Xiao, LI Jian-he

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (12) : 82-89.

PDF(5246 KB)
PDF(5246 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (12) : 82-89. DOI: 10.11988/ckyyb.20221189
ADAPTABILITY OF TUNNELS CROSSING ACTIVE FAULTS

Structural Safety Monitoring System and Layout Design for Long Distance Tunnel Crossing Active Fault Zone

  • ZHANG Yu-ting1, WANG Yi-shen2, ZHAO Li-peng2, HUANG Shu-ling1, HE Xiao2, LI Jian-he3
Author information +
History +

Abstract

Long-distance water conveyance tunnel and other line projects will inevitably cross active fault zones, giving rise to the risk of structural deformation and tunnel instability. Reliable structural safety monitoring scheme is a necessary means to effectively monitor the safety state of tunnel and evaluate the adaptability of anti-fault measures. At present,there are few studies related to the structural safety monitoring system of tunnels crossing active fault zone. In view of this,a “five adaptations” principle of monitoring the safety of tunnel crossing active fault zone is put forward: the monitoring should adapt to 1) the current specifications or technical standards, 2) the motion characteristics of active fault zones, 3) the deformation law and failure characteristics of tunnel, 4) the anti-fault measures, and 5) the construction methods of tunnel. With the Xianglushan tunnel of Central Yunnan Water Diversion Project as a case study,the safety monitoring system and layout design based on the “five adaptations” are studied in line with the deformation and failure law under fault creep action. At the cross of Xianglushan tunnel and Lijiang-Jianchuan active fault,surrounding rock deformation and opening of joint should be considered as major monitoring items,and shear compression of joint and compressive strain of concrete should be taken as a basic monitoring content; the intersection area of the affected zone and the fault zone should be the key monitoring area; and dislocation meter, joint meter,strain gauge and pressure gauge should be selected as monitoring instruments. Moreover,the monitoring devices should be installed synchronously with the construction of monitored objects. Such a monitoring system serves as a useful idea for the safety monitoring layout design of tunnels crossing active fault zones

Key words

long distance tunnel / active fault zone / safety monitoring / layout design / Xianglushan Tunnel

Cite this article

Download Citations
ZHANG Yu-ting, WANG Yi-shen, ZHAO Li-peng, HUANG Shu-ling, HE Xiao, LI Jian-he. Structural Safety Monitoring System and Layout Design for Long Distance Tunnel Crossing Active Fault Zone[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(12): 82-89 https://doi.org/10.11988/ckyyb.20221189

References

[1] 曲桂有. 厂口隧洞穿越普渡河断裂带的监测成果分析[J]. 西部探矿工程, 2005, 17(8): 94-97.
[2] 崔光耀, 伍修刚, 王明年, 等. 汶川8.0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术, 2017, 54(2): 9-16.
[3] 王道远, 崔光耀, 袁金秀, 等. 强震区隧道施工塌方段震害机理及处治技术研究[J]. 岩土工程学报, 2018, 40(2): 353-359.
[4] 马亚丽娜, 盛 谦, 崔 臻, 等. 基于弹性地基梁理论的跨活断裂隧洞纵向变形及内力响应特性研究[J]. 防灾减灾工程学报, 2018, 38(4): 715-722.
[5] 熊 炜, 范 文, 彭建兵,等. 正断层活动对公路山岭隧道工程影响的数值分析[J]. 岩石力学与工程学报, 2010, 29(增刊1):2845-2852.
[6] 赵 坤, 陈卫忠, 赵武胜, 等. 逆断层错动作用下隧道衬砌铰接设计参数研究[J]. 岩石力学与工程学报, 2018, 37(增刊1): 298-308.
[7] 刘学增, 林亮伦. 75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2011, 30(12): 2523-2530.
[8] 信春雷, 高 波, 闫高明, 等. 跨走滑断层隧道地震破坏特征与抗减震措施研究[J]. 振动工程学报, 2016, 29(4): 694-703.
[9] 王旺盛, 陈长生, 王家祥, 等. 滇中引水工程香炉山深埋长隧洞主要工程地质问题[J]. 长江科学院院报, 2020, 37(9): 154-159.
[10]丁秀丽, 张雨霆, 张传健,等. 隧洞穿越活动断层应对措施及其适应性研究综述[J]. 隧道与地下工程灾害防治, 2019(1):25-40.
[11]李 勇. 狮子山隧洞穿越 F_ (16) 活动断裂带结构防震抗震关键技术[J]. 中国水能及电气化, 2021(11):7-13.
[12]SHAHIDI A R, VAFAEIAN M. Analysis of Longitudinal Profile of the Tunnels in the Active Faulted Zone and Designing the Flexible Lining [J]. Tunnelling and Underground Space Technology, 2005, 20(3): 213-221.
[13]DALGI>Ç S. Tunneling in Squeezing Rock, the Bolu Tunnel, Anatolian Motorway, Turkey[J]. Engineering Geology, 2002, 67(1): 73-96.
[14]SL 764—2018,水工隧洞安全监测技术规范[S]. 北京:中国水利水电出版社,2019.
[15]SL 725—2016,水利水电工程安全监测设计规范[S]. 北京:中国水利水电出版社,2016.
[16]ROGERS J,PECK R. Engineering Geology of the Bay Area Rapid Transit(BART) System,1964-75[EB/OL]. California,USA:Geolith Consultants,Inc.,2000.[2022-08-21]. http://sonic.net/mly/www.geolith.com/bart/#orinda.
[17]刘承新,陈长生,王旺盛,等. 滇中引水工程可行性研究输水线路大理Ⅰ段工程地质勘察报告[R]. 武汉:长江勘测规划设计研究有限责任公司,2014.
[18]黄书岭,张雨霆,张 练,等. 滇中引水工程香炉山隧洞围岩支护措施优化及软岩大变形防治专题研究[R]. 武汉:长江水利委员会长江科学院,2017.
[19]LUBLINER J, OLIVER J, OLLER S, et al. A Plastic-Damage Model for Concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
[20]LEE J, FENVES G L. Plastic-Damage Model for Cyclic Loading of Concrete Structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
PDF(5246 KB)

Accesses

Citation

Detail

Sections
Recommended

/