Real-time Control Technology for Flood Discharge Safety of Large-scale Hydraulic Projects

HUANG Guo-bing, YANG Wei, HOU Dong-mei, HU Han, LI Hui-ping, ZHANG Lu-chen, WU Shuang

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (10) : 88-92.

PDF(2096 KB)
PDF(2096 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (10) : 88-92. DOI: 10.11988/ckyyb.20210588
HYDRAULICS

Real-time Control Technology for Flood Discharge Safety of Large-scale Hydraulic Projects

  • HUANG Guo-bing1, YANG Wei1, HOU Dong-mei1, HU Han1, LI Hui-ping2, ZHANG Lu-chen3, WU Shuang1
Author information +
History +

Abstract

In the upper and middle reaches of the Yangtze River, undesirable hydraulic characteristics and structural damage caused by flood discharge have emerged in some large-scale hydraulic projects. Characteristics of response to safety regulation are studied for flood discharge structures and other structures at the damsite. The disaster-causing mechanism of flood discharge damage is revealed, and the precise regulation technology is developed to reduce the threat of flood discharge. An intelligent and fast evaluation method is proposed, and a flood discharge safety monitoring and real-time operation system is established. The above evaluation method and monitoring system can be used for real-time monitoring, prediction, evaluation and optimization scheduling of flood discharge and energy dissipation protection, cavitation erosion, structural and field vibration, atomization and other response characteristics. The findings and corresponding technologies proposed in this study provide a well guidance for similar projects.

Key words

flood discharge / precise regulation / safety monitoring / intelligent evaluation / real-time operation

Cite this article

Download Citations
HUANG Guo-bing, YANG Wei, HOU Dong-mei, HU Han, LI Hui-ping, ZHANG Lu-chen, WU Shuang. Real-time Control Technology for Flood Discharge Safety of Large-scale Hydraulic Projects[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(10): 88-92 https://doi.org/10.11988/ckyyb.20210588

References

[1] 郝 铭,李国栋. 柴坪水电站溢流坝下游河床冲刷试验[J]. 南水北调与水利科技, 2019, 17(4): 165-171.
[2] 刘沛清,刘心爱,李福田. 消力池底板块的失稳破坏机理及其防护措施[J]. 水利学报, 2001(9): 1-9.
[3] 高 昂,吴时强,王芳芳,等. 掺气减蚀技术及掺气设施研究进展[J]. 水利水电科技进展, 2019, 39(2): 86-94.
[4] 文林森,黄国兵,王才欢,等. 水流掺气设施布置型式的研究总结与展望[J]. 长江科学院院报, 2017, 34(4): 52-55.
[5] 梁 超,张金良,练继建,等. 高坝泄流诱发事故闸门的爬行振动研究[J]. 水利学报, 2018, 49(12): 1503-1511, 1522.
[6] 马 斌,葛金钊,梁 帅,等. 高拱坝泄流诱发地基场地振动特性及泄流方案优化研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(1): 27-34.
[7] 韩喜俊,渠立光,程子兵.高坝泄洪雾化工程防护措施研究进展[J].长江科学院院报,2013,30(8):63-69.
[8] 练继建,刘 丹,刘 昉. 中国高坝枢纽泄洪雾化研究进展与前沿[J]. 水利学报, 2019, 50(3): 283-293.
[9] 练继建,郭捷山,刘 昉.泄洪低频声波诱发房屋卷帘门振动分析研究[J].水利学报,2015,46(10):1207-1212.
[10] 叶德震. 金安桥水电站消力池底板破坏反演分析研究[D]. 天津:天津大学, 2018.
[11] 王 珏,杨 柳. 安康水电站表孔消力池底板修复处理研究[J]. 水电与抽水蓄能, 2016, 2(2): 60-64.
[12] 张泽祯. 巴基斯坦塔贝拉水利工程的一些经验[J]. 水利水电技术, 1985(3): 59-64.
[13] 刘沛清,高季章,李桂芬. 五强溪水电站右消力池底板块失事分析[J]. 水利学报, 1999(1): 3-5.
[14] 黄国兵,侯冬梅,胡 晗,等. 枢纽泄洪运行安全实时调控技术研究报告[R]. 武汉:长江科学院, 2021.
[15] 练继建,杨 阳,胡少伟,等. 特大水利水电枢纽调控与安全运行研究进展与前沿[J]. 工程科学与技术, 2017, 49(1): 27-32.
[16] 侯冬梅,胡 晗. 三峡深孔泄槽水流特性研究报告[R]. 武汉:长江科学院, 2017.
[17] 梁 超. 高坝泄流诱发结构和场地振动机理和减振方法研究[D].天津:天津大学, 2017.
[18] 赵梦丽. 泄洪洞事故闸门动水闭门水力及爬振特性研究[D]. 天津:天津大学, 2017.
[19] 侯冬梅,胡 晗,刘圣凡. 向家坝水电站表孔运行闸首漩涡形成机理及应对措施研究报告[R]. 武汉:长江水利委员会长江科学院, 2019.
[20] 张陆陈,范雪梅,骆少泽,等. 高坝泄洪消能诱发场地振动的预测方法[J]. 水利水电科技进展, 2018, 38(6): 66-69.
[21] 张 龑,练继建,刘 昉,等. 基于模型试验的高坝泄洪诱发场地振动影响因素研究[J]. 振动与冲击, 2016, 35(16): 30-37.
[22] 练继建,刘 昉. 金沙江向家坝水电站泄洪诱发场地振动及减振措施研究报告[R]. 天津: 天津大学, 2014.
[23] 杨 敏,崔广涛. 水垫塘底板稳定性控制指标的探讨[J]. 水利学报, 2003(8): 6-10.
PDF(2096 KB)

Accesses

Citation

Detail

Sections
Recommended

/