Structural Adaptability of Fenghuangshan Tunnel of Central Yunnan Water Diversion Project to Active Fault Zone

SI Jian-qiang, WANG Tao, XIANG Tian-bing, JIANG Min

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (12) : 105-110.

PDF(4813 KB)
PDF(4813 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (12) : 105-110. DOI: 10.11988/ckyyb.20221049
ADAPTABILITY OF TUNNELS CROSSING ACTIVE FAULTS

Structural Adaptability of Fenghuangshan Tunnel of Central Yunnan Water Diversion Project to Active Fault Zone

  • SI Jian-qiang1, WANG Tao2, XIANG Tian-bing1, JIANG Min1
Author information +
History +

Abstract

Tunnels account for 92% of the water conveyance structures in Central Yunnan Water Diversion Project. The tunnel line confronts with regional active fault zone and strata with complex geological conditions for multiple times, posing threats to the construction and safe operation of the project. The engineering design case of a tunnel of the Central Yunnan Water Diversion Project crossing active fault zone is taken as research background. The structural type of the tunnel is selected, and the adaptability of tunnel structure to creep deformation and stick-slip deformation of fault zone is investigated via three-dimensional simulation, and the reasonable age of service before overhaul in the operation period of the project is put forward. Results manifest that short lining and wide deformation joint can effectively reduce the structural stress caused by the displacement of regional active fault zone, and prolong the service life of the lining structure. The research findings offer reference for the anti-fault design of tunnels.

Key words

regional active fault zone / anti-fault measures of tunnel / structural adaptability analysis / three-dimensional simulation analysis / Central Yunnan Water Diversion Project

Cite this article

Download Citations
SI Jian-qiang, WANG Tao, XIANG Tian-bing, JIANG Min. Structural Adaptability of Fenghuangshan Tunnel of Central Yunnan Water Diversion Project to Active Fault Zone[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(12): 105-110 https://doi.org/10.11988/ckyyb.20221049

References

[1] 丁秀丽,张雨霆,张传健,等. 隧洞穿越活动断层应对措施及其适应性研究综述[J]. 隧道与地下工程灾害防治,2019,1(1):8-23.
[2] 刘东燕,徐锡伟. 活动断层地震灾害预测方法与应用[M].北京:科学出版社,2011.
[3] CAULFIELD R J, KIEFFER D S, TSZTOO D F, et al. Seismic Design Measures for the Retrofit of the Claremont Tunnel[C]//Rapid Excavation and Tunneling Conference (RETC) Proceedings. Colorado, USA: Society for Mining, Metallurgy, and Exploration, Inc (SME). Seattle, June 2005: 1-11.
[4] SHAHIDI A R, VAFAEIAN M. Analysis of Longitudinal Profile of the Tunnels in the Active Faulted Zone and Designing the Flexible Lining (for Koohrang-III Tunnel)[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 213-221.
[5] 杨 禧. 掌鸠河引水供水工程过普渡河大断裂措施研究与设计[J]. 水力发电,2011,37(10):42-43.
[6] WANG W L, WANG T T, SU J J, et al. Assessment of Damage Inmountain Tunnels Due to the Taiwan Chi-Chi Earthquake[J]. Tunnellingand Underground Space Technology Incorporating Trenchless Technology Research, 2001, 16(3): 133-150.
[7] 周光新,盛 谦,张传健,等. 穿越走滑断层铰接隧洞抗错断设计参数作用机制研究[J]. 岩石力学与工程学报,2022,41(5):941-953.
[8] 亚丽娜,盛 谦,崔 臻,等. 基于三维离散-连续耦合方法的跨活动断裂隧洞错断破坏机制研究[J]. 岩土工程学报,2018,40(增刊2):240-245.
[9] 朱 勇,周 辉,张传庆,等.跨活断层隧道断错灾变与防控技术研究现状和展望[J]. 岩土工程学报,2012,41(增刊1):2711-2724.
[10]PARK J, LEE Y, SONG J, et al. A Constitutive Model for Shear Behavior of Rock Joints Based on Three-dimensional Quantification of Joint Roughness[J]. Rock Mechanics and Rock Engineering, 2013, 46(6): 1513-1537.
[11]刘国钊,乔亚飞,何满潮,等. 活动性断裂带错动下隧道纵向响应的解析解[J]. 岩土力学,2020, 41(3):923-932.
[12]SL 297—2002,水工隧洞设计规范[S].北京:中国水利水电出版社,2003.
[13]SL 191—2008,工混凝土结构设计规范[S].北京:中国水利水电出版社,2009.
PDF(4813 KB)

Accesses

Citation

Detail

Sections
Recommended

/