Experimental Study on Moisture Transmission and Boundary Conditions in Concrete

JIANG Ke, PANG Chao-ming, ZHANG Hui, LI Yang, CHEN Wei

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (10) : 161-166.

PDF(1434 KB)
PDF(1434 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (10) : 161-166. DOI: 10.11988/ckyyb.20210590
HYDRAULIC STRUCTURE AND MATERIAL

Experimental Study on Moisture Transmission and Boundary Conditions in Concrete

  • JIANG Ke1, PANG Chao-ming2, ZHANG Hui1, LI Yang1, CHEN Wei1
Author information +
History +

Abstract

Transport of moisture is the main cause of the durability problems of concrete. In the light of the similarity between concrete bulk and slice in terms of moisture transmission, we investigated into the law of moisture transport in the wetting process of concrete in pure water environment and salt solutions of different concentrations on the basis of parallel-tube adsorption theory and Washburn equation. Moreover, we also simulated the law of moisture transmission in the boundary layer of concrete taking concrete slices as the object. Our findings suggest that the wetting process of concrete’s boundary layer is dominated by capillary adsorption, and the existence of ions does not change the basic law, but only affects the transmission rate of moisture. The mass transmission model is fitted and verified through experimental data, and on this basis, the saturation change model of the concrete boundary layer is deduced, which appropriately describes the law of saturation change of the concrete boundary layer in one-dimensional transmission direction.

Key words

concrete / moisture transmission / boundary conditions / experimental study / bulk / slice

Cite this article

Download Citations
JIANG Ke, PANG Chao-ming, ZHANG Hui, LI Yang, CHEN Wei. Experimental Study on Moisture Transmission and Boundary Conditions in Concrete[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(10): 161-166 https://doi.org/10.11988/ckyyb.20210590

References

[1] TAMIMI A K, ABDALLA J A, SAKKA Z I. Prediction of Long Term Chloride Diffusion of Concrete in Harsh Environment[J]. Construction and Building Materials, 2008, 22(5): 829-836.
[2] 金伟良,金立兵,延永东,等.海水干湿交替区氯离子对混凝土侵入作用的现场检测和分析[J]. 水利学报,2009,40(3):364-371.
[3] 付传清,屠一军,金贤玉,等.荷载和环境共同作用下混凝土中氯离子传输的试验研究[J].水利学报,2016,47(5):674-684 .
[4] 陈伟康,刘清风.干湿交替下混凝土中水分和多离子耦合传输的数值研究[J].水利学报,2021,52(5):622-632.
[5] 庞超明,徐 剑,王 进,等.混凝土干湿过程及循环制度的研究[J].建筑材料学报,2013,14(2): 315-320.
[6] 赵铁军.混凝土渗透性[M].北京:科学出版社,2006.
[7] 弗兰克 P莫克鲁佩勒,大卫 P德维特,狄奥多尔 L伯格曼,等.传热和传质基本原理[M]. 葛新石,叶 宏,译.北京:化学工业出版社,2007.
[8] 王补宣.工程传热传质学[M].北京:科学出版社,2002.
[9] 刘 鹏,余志武,王卫仑,等.模拟环境中混凝土与环境间水分传输边界条件[J].中国公路学报,2013,28(2): 108-116.
[10] MARTYS N S, FERRARIS C F. Capillary Transport in Mortars and Concrete[J]. Cement and Concrete Research, 1997, 27(5): 747-760.
[11] NEITHALATH N, WEISS J, OLEK J. Characterizing Enhanced Porosity Concrete Using Electrical Impedance to Predict Acoustic and Hydraulic Performance[J]. Cement and Concrete Research, 2006, 36(11): 2074-2085.
[12] 贾志刚,齐 平,李 科,等.岩石毛细吸水试验新方法[J] 长江科学院院报,2015,32(5):95-99.
[13] 沈春华,水中和,周紫晨.水泥基材料水分传输及动力学研究[J].武汉理工大学学报,2007,29(9):84-87.
[14] HALL C, HOFF W D, SKELDON M. The Sorptivity of Brick: Dependence on the Initial Water Content[J]. Journal of Physics D: Applied Physics, 1983, 16(10): 1875-1880.
PDF(1434 KB)

Accesses

Citation

Detail

Sections
Recommended

/