Spatial and Temporal Characteristics of Water Resources in Qinghai-Tibet Plateau in Recent Two Decades

ZHOU Si-ru, XIN Zhong-bao

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (6) : 31-39.

PDF(3603 KB)
PDF(3603 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (6) : 31-39. DOI: 10.11988/ckyyb.20210212
WATER RESOURCES

Spatial and Temporal Characteristics of Water Resources in Qinghai-Tibet Plateau in Recent Two Decades

  • ZHOU Si-ru, XIN Zhong-bao
Author information +
History +

Abstract

The Qinghai-Tibet Plateau is renowned as the water tower of Asia and the third pole of the world. Changes in the water resources of the Qinghai-Tibet Plateau has a profound impact on the water resources security and people’s lives in China and its neighboring countries. The temporal and spatial changes of surface and groundwater resources in the Qinghai-Tibet Plateau from 1997 to 2018 are studied using linear tendency estimation, Mann-Kendall trend test and Pearson correlation coefficient method based on the data of Qinghai Water Resources Bulletin and Tibet Water Resources Bulletin. The results of the study indicate that: (1) water resources in the Qinghai-Tibet Plateau is extremely concentrated, mainly in Shannan, Nyingchi City, the Yarlung Zangbo River Basin and the river basins of southern Tibet. The south and east of Qinghai-Tibet Plateau boasts abundant water resources while the north and the west less. (2) From 1997 to 2018, the amount of surface water resources on the Qinghai-Tibet Plateau showed an insignificant upward trend, while the amount of groundwater resources (-16.64 billion m3/(10 a)) a significant downward trend. The change trends of water resources differed notably in spatial scale, with the surface water resources (9.83 billion m3/(10 a)) and groundwater resources (5.8 billion m3/(10 a)) in most areas of Qinghai Province in north Qinghai-Tibet Plateau displaying a significant upward trend, and surface water resources in most parts of the southern Tibet Autonomous Region an insignificant downward trend, groundwater resources a significant downward trend (-19.54 billion m3/(10 a)). (3) In recent years, the temperature in Qinghai-Tibet Plateau has had a very significant increasing trend, with the rising rate reaching 0.49 ℃/(10 a). The precipitation of Qinghai Province in the northern part of the Qinghai-Tibet Plateau showed a significant increase trend, while the southern part an insignificant downward trend. In conclusion, precipitation is the major factor that induces the changes of surface water resources and groundwater resources in the Qinghai-Tibet Plateau.

Key words

water resources / spatial distribution / temporal and spatial changes / climate change / influence factor / Qinghai-Tibet Plateau

Cite this article

Download Citations
ZHOU Si-ru, XIN Zhong-bao. Spatial and Temporal Characteristics of Water Resources in Qinghai-Tibet Plateau in Recent Two Decades[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(6): 31-39 https://doi.org/10.11988/ckyyb.20210212

References

[1] IMMERZEEL W W, BEEK L P H V, BIERKENS M F P, et al. Climate Change Will Affect the Asian Water Towers[J]. Science, 2010, 328(5984): 1382-1385.
[2] QIU J. China: The Third Pole[J]. Nature, 2008, 454(7203): 393-396.
[3] YAO Tan-dong, THOMPSON L G, MOSBUGGER V, et al. Third Pole Environment[J]. Environmental Development, 2012, 3(1): 52-64.
[4] 张镱锂,李炳元,郑 度.论青藏高原范围与面积[J]. 地理研究,2002,21(1):1-8.
[5] PRITCHARD H D. Asia’s Shrinking Glaciers Protect Large Populations from Drought Stress[J]. Nature, 2019, 569(7758): 649-654.
[6] 何艳虎,李深林,杨 洁,等.我国不同区域用水结构变化及其驱动因素分析[J]. 水资源与水工程学报,2016,27(4):1-6.
[7] 聂忆黄,龚 斌,李 忠.青藏高原水源涵养能力时空变化规律[J]. 地学前缘,2010,17(1):373-377.
[8] 刘斌涛,陶和平,孔 博,等.云南省水资源时空分布格局及综合评价[J]. 自然资源学报,2014,29(3):454-465.
[9] 党学亚,常 亮,卢 娜.青藏高原暖湿化对柴达木水资源与环境的影响[J]. 中国地质,2019,46(2):359-368.
[10] 段安民,肖志祥,吴国雄.1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展,2016,12(5):374-381.
[11] YANG Wei,GUO Xiao-feng,YAO Tan-dong,et al. Recent Accelerating Mass Loss of Southeast Tibetan Glaciers and the Relationship with Changes in Macroscale Atmospheric Circulations[J]. Climate Dynamics,2016,47(3/4): 805-815.
[12] 朱立平,彭 萍,张国庆,等.全球变化下青藏高原湖泊在地表水循环中的作用[J]. 湖泊科学,2020,32(3):597-608.
[13] 姚檀栋,姚治君.青藏高原冰川退缩对河水径流的影响[J]. 自然杂志,2010,32(1):4-8.
[14] 姜永见,李世杰,沈德福,等.青藏高原江河源区近40年来气候变化特征及其对区域环境的影响[J]. 山地学报,2012,30(4):461-469.
[15] CAO Jian-ting, QIN Da-he, KAN E, et al. River Discharge Changes in the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2006, 51(5): 594-600.
[16] 刘 佳,陈 超,秦宁生,等.青藏高原若尔盖生态区水资源对气候变化的响应[J]. 冰川冻土,2016,38(2):498-508.
[17] XU Jian-hua, CHEN Ya-ning, LI Wei-hong, et al. The Nonlinear Hydro-climatic Process in the Yarkand River, Northwestern China[J]. Stochastic Environmental Research & Risk Assessment, 2013, 27(2): 389-399.
[18] BANASIK K,HEJDUK L,HEJDUK A, et al. Long-term Variability of Runoff from a Small Catchment in the Region of the Kozienice Forest[J]. Sylwan,2013,157(8):578-586.
[19] 张 蔚,严以新,郑金海,等.珠江三角洲年际潮差长期变化趋势[J]. 水科学进展,2010,21(1):77-83.
[20] LACOMBE G, MCCARTNEY M, FORKUOR G. Drying Climate in Ghana over the Period 1960-2005: Evidence from the Resampling-Based Mann-Kendall Test at Local and Regional Levels[J]. International Association of Scientific Hydrology Bulletin, 2012, 57(8): 1594-1609.
[21] 江 渊,王 文,边增淦.基于偏差校正和三重组合分析的主、被动微波土壤湿度数据融合[J]. 水资源与水工程学报,2020,31(2):243-252,260.
[22] 杨恒山,刘 江,梁怀宇.西辽河平原气候及水资源变化特征[J]. 应用生态学报,2009,20(1):84-90.
[23] 郑 然,李栋梁,蒋元春.全球变暖背景下青藏高原气温变化的新特征[J]. 高原气象,2015,34(6):1531-1539.
[24] 陈德亮,徐柏青,姚檀栋,等.青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报,2015,60(32):3025-3035,1-2.
[25] XIANG Long-wei, WANG Han-sheng, HOLGER S, et al. Groundwater Storage Changes in the Tibetan Plateau and Adjacent Areas Revealed from GRACE Satellite Gravity Data[J]. Earth & Planetary Science Letters, 2016, 449(1): 228-239.
[26] 许朋琨,张万昌.GRACE反演近年青藏高原及雅鲁藏布江流域陆地水储量变化[J]. 水资源与水工程学报,2013,24(1):23-29.
[27] 樊 辉,胡金明,何大明.云南低纬高原降水变化趋势(英文)[J]. Journal of Geographical Sciences, 2013, 23(6):1107-1122.
[28] LI Yun-gang, HE Da-ming, HU Jin-ming, et al. Variability of Extreme Precipitation over Yunnan Province, China 1960-2012[J]. International Journal of Climatology, 2015, 35(2): 245-258.
[29] KOJI M, KOSUKE H. Time-variable Ice Loss in Asian High Mountains from Satellite Gravimetry[J]. Earth and Planetary Science Letters, 2010, 290(1): 30-36.
[30] 文汉江,黄振威,王友雷,等.青藏高原及其周边地区水储量变化的独立成分分析[J]. 测绘学报,2016,45(1):9-15.
[31] 周陈超,贾绍凤,燕华云,等.近50 a以来青海省水资源变化趋势分析[J]. 冰川冻土,2005,27(3):432-437.
[32] 李婉秋,王 伟,章传银,等.利用Forward-Modeling方法反演青藏高原水储量变化[J]. 武汉大学学报(信息科学版),2020,45(1):141-149.
[33] 李志威,余国安,徐梦珍,等.青藏高原河流演变研究进展[J]. 水科学进展,2016,27(4):617-628.
[34] 张镱锂,刘林山,王兆锋,等.青藏高原土地利用与覆被变化的时空特征[J]. 科学通报,2019,64(27):2865-2875.
[35] 张 江,袁旻舒,张 婧,等.近30年来青藏高原高寒草地NDVI动态变化对自然及人为因子的响应[J]. 生态学报,2020,40(18):6269-6281.
[36] 何盘星,胡鹏飞,孟晓于,等.气候变化与人类活动对陆地水储量的影响[J]. 地球环境学报,2019,10(01):38-48.
[37] 达 娃.西藏地区水资源利用分析[J]. 长江科学院院报,2010,27(3):74-78.
PDF(3603 KB)

Accesses

Citation

Detail

Sections
Recommended

/