Thickness of Glacier and Frozen Soil in the Source Region of Changjiang River Based on GPR Detection

ZHOU Li-ming, ZHANG Yang

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (3) : 1-8.

PDF(6824 KB)
PDF(6824 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (3) : 1-8. DOI: 10.11988/ckyyb.20231225
Special Contribution

Thickness of Glacier and Frozen Soil in the Source Region of Changjiang River Based on GPR Detection

  • ZHOU Li-ming, ZHANG Yang
Author information +
History +

Abstract

Changes of glacier in the source region of Changjiang (also known as Yangtze) River reveal the climate change trends in the Qinghai-Xizang (Tibetan) Plateau. Subglacial topography is crucial for understanding glacier development and movement processes, and is, furthermore, of guiding importance for the soil and water conservation and freshwater resource reserves in the source region of Changjiang River. Based on a decade of scientific expedition and research on the source region, the Changjiang River Scientific Research Institute accurately measured the glacier thickness on the main peak of Geladandong in 2022 and 2023 by employing ground-penetrating radar (GPR). We also conducted investigations on the upper limit of permafrost thickness in the Chatan Wetland. In association with numerical simulations of GPR wave field by multiple glacier and permafrost geological models, we have enhanced the effectiveness and accuracy of GPR in detecting glacier and permafrost in the source region. The findings manifest that both the glacier thickness on the main peak of Geladandong and the upper limit of permafrost in the Chatan Wetland have experienced varying degrees of decline. Long-term observations of glacier thickness and permafrost upper limits are essential and must be continued in order to accumulate more data and analyze trends, thus estimating ice reserves in the detection area and investigating the impacts of climate change on glaciers.

Key words

source region of Changjiang River / Ground Penetrating Radar (GPR) / glacier / frozen soil / climate change / soil and water conservation / freshwater resource reserve

Cite this article

Download Citations
ZHOU Li-ming, ZHANG Yang. Thickness of Glacier and Frozen Soil in the Source Region of Changjiang River Based on GPR Detection[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(3): 1-8 https://doi.org/10.11988/ckyyb.20231225

References

[1] 王璞玉, 李忠勤, 吴利华, 等. 探地雷达在冰川厚度及冰下地形探测中的应用[J]. 吉林大学学报(地球科学版), 2011, 41(增刊1): 393-400.(WANG Pu-yu, LI Zhong-qin, WU Li-hua, et al. Application of Ground Penetrating Radar in Detecting Glacier Thickness and Subglacial Terrain[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(Supp.1): 393-400.(in Chinese))
[2] 吴利华,李忠勤,王璞玉,等.天山博格达峰地区四工河4号冰川雷达测厚与冰储量估算[J].冰川冻土,2011,33(2):276-282.(WU Li-hua,LI Zhong-qin,WANG Pu-yu,et al. Sounding the Sigong River Glacier No.4 in Mt.Bogda Area, the Tianshan Mountains by Using Ground Penetrating Radar and Estimating the Ice Volume[J]. Journal of Glaciology and Geocryology,2011,33(2):276-282.(in Chinese))
[3] 王玉哲, 任贾文, 秦 翔, 等. 祁连山老虎沟12号冰川雷达测厚和冰下地形特征研究[J]. 冰川冻土, 2016, 38(1): 28-35.(WANG Yu-zhe, REN Jia-wen, QIN Xiang, et al. Ice Depth and Glacier-bed Characteristics of the Laohugou Glacier No. 12, Qilian Mountains, Revealed by Ground-penetrating Radar[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 28-35.(in Chinese))
[4] 李亚楠, 李 真, 王宁练. 东昆仑山煤矿冰川雷达测厚及冰储量估算[J]. 冰川冻土, 2018, 40(1): 38-46.(LI Ya-nan, LI Zhen, WANG Ning-lian. Ice Thickness Sounded by Ground Penetrating Radar on the Meikuang Glacier in the Eastern Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 38-46.(in Chinese))
[5] 靳胜强, 田立德. 西藏阿里地区嘎尼冰川厚度特征及冰储量估算[J]. 冰川冻土, 2019, 41(3): 516-524.(JIN Sheng-qiang, TIAN Li-de. Depth Sounded by GPR and Volume Estimated of the Gani Glacier in Ngari Prefecture, Tibet[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 516-524.(in Chinese))
[6] 顾钟炜.测地雷达在寒区浅层地质调查中的应用[J].冰川冻土,1994,16(3):283-288.(GU Zhong-wei.Application of Ground Penetrating Radar in Shallow Geological Survey in Cold Region[J]. Journal of Glaciology and Geocryology,1994,16(3):283-288.(in Chinese))
[7] 杜二计, 赵 林, 李 韧. 探地雷达在祁连山多年冻土调查中的应用[J]. 冰川冻土, 2009, 31(2): 364-371.(DU Er-ji, ZHAO Lin, LI Ren. The Application of Ground Penetrating Radar to Permafrost Investigation in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 364-371.(in Chinese))
[8] 武小鹏, 魏永梁, 张军平. 探地雷达在多年冻土工程地质勘察中的应用效果研究[J]. 地震工程学报, 2013, 35(2): 240-245.(WU Xiao-peng, WEI Yong-liang, ZHANG Jun-ping. Study on the Application Effect of Ground-penetrating Radar in Permafrost Engineering Geological Investigation[J]. China Earthquake Engineering Journal, 2013, 35(2): 240-245.(in Chinese))
[9] 单 波, 段 毅, 王延辉, 等. 地质雷达在冻土地区输电线路中的应用[J]. 电力勘测设计, 2018(5): 41-45.(SHAN Bo, DUAN Yi, WANG Yan-hui, et al. Application of GPR to Transmission Line in Permafrost Regions[J]. Electric Power Survey & Design, 2018(5): 41-45.(in Chinese))
[10] WOODWARD J, BURKE M J. Applications of Ground-penetrating Radar to Glacial and Frozen Materials[J]. Journal of Environmental and Engineering Geophysics, 2007, 12(1): 69-85.
[11] NAVARRO F J,MARTÍN-ESPAÑOL A,LAPAZARAN J J,et al. Ice Volume Estimates from Ground-penetrating Radar Surveys, Wedel Jarlsberg Land Glaciers, Svalbard[J]. Arctic, Antarctic, and Alpine Research,2014,46(2): 394-406.
[12] 蔡佳欣, 何昱君, 王晓文, 等. 联合时序InSAR和光学遥感解译的大雪山南段石冰川编目与分布特征分析[J]. 冰川冻土, 2023, 45(2): 774-785.(CAI Jia-xin, HE Yu-jun, WANG Xiao-wen, et al. Inventorying and Characterizing Rock Glaciers in the Southern Daxue Shan by Combining Time-series InSAR and Optical Image Interpretation[J]. Journal of Glaciology and Geocryology, 2023, 45(2): 774-785.(in Chinese))
[13] 游艳辉, 李党民, 单 波, 等. 高密度电法在输电线路塔基基础附近多年冻土探测中的应用[J]. 冰川冻土, 2022, 44(2): 684-692.(YOU Yan-hui, LI Dang-min, SHAN Bo, et al. Application of High Density Electrical Resistivity Tomography in Investigating the Permafrost around Tower Foundations of Power Transmission Line[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 684-692.(in Chinese))
[14] 孙思源, 余学中, 谢汝宽, 等. 航空电磁技术在冻土调查中的探测能力分析[J]. 物探与化探, 2022, 46(1): 104-113.(SUN Si-yuan, YU Xue-zhong, XIE Ru-kuan, et al. Capabilities of Airborne Electromagnetic Methods to Detect Permafrost[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 104-113.(in Chinese))
[15] 贠正利,黄小年.综合物探方法在青藏工程走廊多年冻土辨识中的应用[J].工程勘察,2019,47(11):71-78.(YUN Zheng-li,HUANG Xiao-nian.Application of Integrated Geophysical Method to Identify Permafrost in Qinghai-Tibet Engineering Corridor[J].Geotechnical Investigation & Surveying,2019,47(11):71-78.(in Chinese))
[16] 杨贵前,谢昌卫,王 武,等.浅基岩埋深条件下多年冻土的瞬变电磁法探测研究[J].冰川冻土,2019,41(5):1067-1077.(YANG Gui-qian,XIE Chang-wei,WANG Wu,et al. Study on TEM Sounding Permafrost with Shallow Bedrock[J]. Journal of Glaciology and Geocryology,2019,41(5):1067-1077.(in Chinese))
[17] JOL H M.探地雷达理论与应用[M].雷文太,童孝忠,周 旸,等译.北京:电子工业出版社, 2011.(JOL H M. Ground Penetrating Radar: Theory and Applications[M]. Translated by LEI Wen-tai, TONG Xiao-zhong, ZHOU Yang, et al. Beijing: Publishing House of Electronics Industry, 2011.(in Chinese))
[18] GIANNOPOULOS A. Modelling Ground Penetrating Radar by GprMax[J]. Construction and Building Materials, 2005, 19(10): 755-762.
[19] BERENGER J P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves[J]. Journal of Computational Physics, 1994, 114(2): 185-200.
[20] 李大心. 探地雷达方法与应用[M]. 北京: 地质出版社, 1994.(LI Da-xin. Method and Application of Ground Penetrating Radar[M]. Beijing: Geological Publishing House, 1994.(in Chinese))
PDF(6824 KB)

Accesses

Citation

Detail

Sections
Recommended

/