Analysis of Grouting Effect of Water-rich Sandstone Based on Inversion of Permeability by Acoustic Logging

CHEN Bin, ZHAO Li-quan, HU Hui-hua, YAO Sheng-dan, ZHAO Yan-lin, LIU Tong

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (7) : 73-79.

PDF(5009 KB)
PDF(5009 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (7) : 73-79. DOI: 10.11988/ckyyb.20200392
ROCKSOIL ENGINEERING

Analysis of Grouting Effect of Water-rich Sandstone Based on Inversion of Permeability by Acoustic Logging

  • CHEN Bin1, ZHAO Li-quan1, HU Hui-hua2, YAO Sheng-dan3, ZHAO Yan-lin4, LIU Tong1
Author information +
History +

Abstract

To address the difficulty in point-by-point detection of the grouting effect of water-rich broken sand strata, we propose to evaluate the detailed water-sealing effect of grouting via inversion of permeability using acoustic logging. On the basis of Wyllie-Clemenceau's formula and Kozeny-Carman's formula, we established an acoustic velocity-permeability model for water-rich sandstone. With a foundation grouting project in Hunan as research object, we obtained the acoustic velocity and permeability of rock core and rock strata before and after grouting through core test, acoustic logging, and hydraulic fracturing test. By fitting the core test results with the model, we found a nonlinear negative correlation between acoustic velocity and permeability with an obvious cut-off point of change rate in the curve. Grouting affects the rock matrix acoustic velocity and the exponent to the matrix nature. By comparing the permeability calculated by logging acoustic velocity with the hydraulic fracturing test results, we verified the reliability of the model. In addition, we built a quantitative evaluation system for the grouting effect of water-rich sandstone on the basis of calculated permeability, and evaluated the case using this system.

Key words

water-rich sandstone / grouting effect / acoustic velocity / permeability / acoustic logging

Cite this article

Download Citations
CHEN Bin, ZHAO Li-quan, HU Hui-hua, YAO Sheng-dan, ZHAO Yan-lin, LIU Tong. Analysis of Grouting Effect of Water-rich Sandstone Based on Inversion of Permeability by Acoustic Logging[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(7): 73-79 https://doi.org/10.11988/ckyyb.20200392

References

[1] 沙 飞,李术才,刘人太,等. 富水砂层高效注浆材料试验与应用研究[J]. 岩石力学与工程学报,2019,38(7):1420-1433.
[2] 朱杰兵,景 锋,尹健民. 灌浆前后岩体弹性模量的检测[J]. 长江科学院院报,2001,18(4):58-61.
[3] 郝明辉,党玉辉,邢会歌,等. 水泥-化学复合灌浆在断层补强中的应用效果评价[J]. 岩石力学与工程学报,2013,32(11):2268-2274.
[4] 温 帅,汪家林,刘道华,等. 辉绿岩脉复合灌浆试验加固效果研究[J]. 岩石力学与工程学报,2009,28(6):1231-1238.
[5] 胡 熠,谢 强,陈子龙,等. 高密度电法岩溶路基注浆质量检测模型试验研究[J]. 水文地质工程地质,2014,41(3):86-91.
[6] KOHKICHI K,TETSUO I,YOSHITADA M,et al.In-situ Experimental Studies on Improvement of Rock Masses by Grouting Treatment[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3/4):138e1-138e14.
[7] 张文举,卢文波,陈 明,等. 基于灌浆前、后波速变化的岩体固结灌浆效果分析[J]. 岩石力学与工程学报,2012,31(3):469-478.
[8] 简文彬,张 登,许旭堂.基于波速测试的裂隙岩体固结灌浆效果分析[J]. 岩土力学,2014,35(7):1943-1949.
[9] 魏周拓,唐晓明,苏远大,等. 利用井中低频偶极横波进行声波远探测的新方法[J]. 地球物理学报,2013,56(10):3572-3580.
[10] WYLLIE M R J, GREGORY A R, GARDNER L W. Elastic Waves Velocities in Heterogeneous and Porous Media[J]. Geophysics, 1956, 21(1): 41-70.
[11] RAYMER L L, HUNT E R, GARDNER J S. An Improved Sonic Transit Time-to-Porosity Transform[C]//Proceedings of the SPWLA 21st Annual Logging Symposium. Lafayette, Louisiana: The Society of Professional Well Log Analyst. July 8, 1980: 1-13.
[12] RAIGA-CLEMENCEAU J, MARTIN J P, NICOLETIS S. The Concept of Acoustic Formation Factor for More Accurate Porosity Determination form Sonic Transit Time Date[J]. Log Analysis, 1988, 29(1): 54-60.
[13] KAMEL M H, MABROUK W M, BAYOUMI A I. Porosity Estimation Using a Combination of Wyllie-Clemenceau Equations in Clean Sand Formation from Acoustic Logs[J]. Journal of Petroleum Science and Engineering, 2002, 33(4): 241-251.
[14] CARMAN P C. Permeability of Saturated Sands, Soils and Clays[J]. The Journal of Agricultural Science, 1939, 29(2): 263-273.
[15] 李晓庆,齐 阳,唐新军,等. 两种典型级配基土-滤层渗滤系统的颗粒流模拟[J]. 长江科学院院报,2017,34(4):92-97.
[16] JIANG Guang-hui, ZUO Jian-ping, MA Ten, et al. Experimental Investigation of Wave Velocity-Permeability Model for Granite Subjected to Different Temperature Processing[J]. Geofluids, 2017, 12(1): 1-10.
[17] DL/T 5331—2005,水电水利工程钻孔压水试验规程[S]. 北京:中国计划出版社,2005.
[18] 陈 伟,李 远,水中和. 基于超声波速与介电性能的硅酸盐水泥早期水化过程连续监测技术[J]. 硅酸盐通报,2010,29(5):1190-1196.
[19] 李晓昭,安英杰,俞 缙,等. 岩心卸荷扰动的声学反应与卸荷敏感岩体[J]. 岩石力学与工程学报,2003,22(12):2086-2092.
[20] GB 50487—2008,水利水电工程地质勘测规范[S]. 北京:中国计划出版社,2008.
PDF(5009 KB)

Accesses

Citation

Detail

Sections
Recommended

/