The aim of this research is to explore a new method for evaluating the strength characteristic rapidly of heavy metal-contaminated red clay. Direct shear test and resistivity test were carried out for Cu2+ contaminated red clay specimens of varied concentration and dry density. The curves of shear stress and resistivity of Cu2+ contaminated red clay varying synchronously with shear displacement were obtained. Meanwhile, the impacts of initial dry density, vertical pressure, and Cu2+ concentration on shear strength and resistivity were analyzed. According to the principle of shear strength indexes (C and φ), resistivity indexes (ρ0 and φ0) were selected, and the effects of Cu2+ concentration on shear strength indexes and resistivity indexes were examined. Furthermore, the quantitative relations between shear strength (indexes) and destructive resistivity (indexes) were discussed. Test results unveiled that the shear stress-displacement curve of Cu2+ contaminated red clay displayed typical strain hardening features, while resistivity declined with the increase of shear displacement. Shear strength augmented approximately linearly with the growing of initial dry density and vertical pressure while destructive resistivity showed opposite trend. Both shear strength (indexes C and φ) and resistivity (indexes ρ0 and φ0) were in a negative exponential functional relation with Cu2+ concentration. In addition, the curve of shear strength vs. resistivity, curve of cohesion vs. initial resistivity, and curve of internal friction angle vs. inclination of resistivity relation curve displayed consistent trend, showing a good positive exponential function relationship.
Key words
red clay /
Cu2+ contamination /
shear strength /
cohesion /
internal friction /
resistivity /
heavy metal contamination
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 潘 超,刘松玉.重金属污染土的热导率特征试验研究[J].东南大学学报(自然科学版),2019,49(02):362-368.
[2] 何 博,赵 慧,王铁宇,等.典型城市化区域土壤重金属污染的空间特征与风险评价[J].环境科学,2019,40(6):2869-2876.
[3] 张志红,李红艳,师玉敏.重金属Cu~(2+)污染土渗透特性试验及微观结构分析[J].土木工程学报,2014,47(12):122-129.
[4] 陆海军,廖朱玮,汪 琪,等.铅污染红黏土微观结构与变形强度特性[J].岩石力学与工程学报,2014,33(2):4252-4257.
[5] 储 亚,刘松玉,蔡国军,等.锌污染土物理与电学特性试验研究[J].岩土力学,2015,36(10):2862-2868.
[6] AZHAR A T S, AYUNI S A, EZREE A M, et al. The Use of Electrical Resistivity Method to Mapping the Migration of Heavy Metals by Electrokinetic[J]. Doi: 10.1088/1757-899X/226/1/012062.
[7] HAZREEK Z A M, AZHAR A T S, ROSLI S. Field Miniature Study on Heavy Metal Detection Using Electrical Resistivity Imaging (ERI)[J]. International Journal of Civil Engineering and Technology, 2018, 9(5): 284-292.
[8] 叶 萌,李 韬,许丽萍,等.重金属污染土电阻率影响因素的试验研究[J].土木建筑与环境工程,2016,38(增刊1):135-140.
[9] 储 亚,刘松玉,蔡国军,等.重金属污染黏性土电阻率影响因素分析及其预测模型[J].东南大学学报(自然科学版),2016,46(4):866-871.
[10] 孙亚坤,能昌信,刘玉强,等.铬污染土壤电阻率特性及其影响因素研究[J].环境科学学报,2011,31(9):1992-1998.
[11] 王宏胜,唐朝生,巩学鹏,等.生物炭修复重金属污染土研究进展[J].工程地质学报,2018,26(4):1064-1077.
[12] 章定文,曹智国,刘松玉,等.水泥固化铅污染土的电阻率特性与经验公式[J].岩土工程学报,2015,37(9):1685-1691.
[13] GB/T 50123—1999,土工试验方法标准[S]. 北京: 中国计划出版社, 1999.
[14] 查甫生,刘松玉,杜延军,等.非饱和黏性土的电阻率特性及其试验研究[J].岩土力学,2007,28(8):1671-1676.
[15] 查甫生,刘松玉,杜延军,等.电阻率法评价膨胀土改良的物化过程[J].岩土力学,2009,30(6):1712-1718.
[16] 缪林昌,刘松玉,严明良,等.水泥土的电阻率特性研究[J].工程勘察,2000(5):32-34.
[17] 陈学军,陈议城,宋宇,等.Cu2+污染红黏土土性异变现象分析[J].工程地质学报,2019,27(5):1010-1018.