Streamflow Characteristics in the Southeast Tibetan Plateau: Spatial Pattern and Control Factors

LI Xuan, ZHANG Wen-jiang, JIANG Hui-ru, LIU Li

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 25-31.

PDF(2251 KB)
PDF(2251 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 25-31. DOI: 10.11988/ckyyb.201913692021
WATER RESOURCES AND ENVIRONMENT

Streamflow Characteristics in the Southeast Tibetan Plateau: Spatial Pattern and Control Factors

  • LI Xuan, ZHANG Wen-jiang, JIANG Hui-ru, LIU Li
Author information +
History +

Abstract

Hydrologic process on the southeast Tibetan Plateau(TP) under climate change is confronted with more uncertainty.A better understanding of streamflow characteristics as well as their spatial distribution and impact factors on the southeast TP will be critical to dealing with the influence exerted by climate change.In this study, we used the runoff and precipitation data to analyze streamflow characteristics and their spatial distribution via five hydrological signals i.e. averaged annual runoff depth, concentration degree, concentration time, baseflow index, and recession coefficient, and then investigated the related impact factors. Our results showed that in the southeast TP, annual runoff depth decreased from southeast (700-1 300 mm) to northwest (less than 400 mm), but concentration degree showed an opposite spatial distribution increasing from lower than 0.44 in southeast to above 0.59 in northwest. Both recession coefficient and baseflow index increased with elevation in lower altitude basins, ranging from 0.55 to 0.69 and from 0.51 to 0.73, respectively, while decreased in higher altitude basins, ranging from 0.74 to 0.72, and from 0.79 to 0.63, respectively. Impact factors showed noteworthy spatial difference in southeast TP basins. In lower altitude basins (average elevation approximately <3 000 m), precipitation was the main factor, whereas in higher altitude basins (average elevation approximately >3 000 m), only annual runoff depth and concentration degree were controlled by precipitation, while temperature and the underlying surface condition such as terrain and permafrost became the main factors of other characteristics. Since precipitation and permafrost conditions are susceptible to climate change, the time-spatial distribution of water resource in the southeast TP is prone to change, which needs sufficient attention.

Key words

streamflow characteristics / spatial distribution / impact factor / regession analysis / southeast Tibetan Plateau

Cite this article

Download Citations
LI Xuan, ZHANG Wen-jiang, JIANG Hui-ru, LIU Li. Streamflow Characteristics in the Southeast Tibetan Plateau: Spatial Pattern and Control Factors[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(3): 25-31 https://doi.org/10.11988/ckyyb.201913692021

References

[1] 姚檀栋, 秦大河, 沈永平, 等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志, 2013,35(3):179-186.
[2] 杨梅学, 姚檀栋, 田立德, 等. 藏北高原夏季降水的水汽来源分析[J]. 地理科学, 2004, 24(4): 426-431.
[3] 吴绍洪, 尹云鹤, 郑 度, 等. 青藏高原近 30 年气候变化趋势[J]. 地理学报, 2005, 60(1): 3-11.
[4] 徐晓明, 吴青柏, 张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土, 2017, 39(1): 1-8.
[5] 于海英, 许建初. 气候变化对青藏高原植被影响研究综述[J].生态学杂志,2009,28(4):747-754.
[6] 谢昌卫, 丁永建, 刘时银, 等. 长江—黄河源寒区径流时空变化特征对比[J]. 冰川冻土, 2003, 25(4): 414-422.
[7] 邴龙飞, 邵全琴, 刘纪远, 等. 基于小波分析的长江和黄河源区汛期、枯水期径流特征[J]. 地理科学,2011,31(2):232-238.
[8] 李其江. 长江源径流演变及原因分析[J]. 长江科学院院报, 2018,35(8): 1-5.
[9] 张永勇, 张士锋, 翟晓燕, 等. 三江源区径流演变及其对气候变化的响应[J]. 地理学报, 2012, 67(1): 71-82.
[10] 苏中海, 陈伟忠, 闫永福. 青海澜沧江源径流变化及其对降水的响应[J]. 现代农业科技, 2016(8): 180-182,185.
[11] 刘苏峡, 丁文浩, 莫兴国, 等. 澜沧江和怒江流域的气候变化及其对径流的影响[J]. 气候变化研究进展, 2017, 13(4): 356-365.
[12] 罗 贤, 何大明, 季 漩, 等. 近 50 年怒江流域中上游枯季径流变化及其对气候变化的响应[J]. 地理科学, 2016, 36(1): 107-113.
[13] 程 珂,周东升,李 铭,等.大渡河流域近 51 年降水径流特征分析[J]. 水电能源科学,2013,31(2):5-8.
[14] 李荣波, 魏 鹏, 纪昌明, 等. 雅砻江流域近 60 a 径流趋势特征分析[J]. 人民长江, 2017, 48(5): 38-42.
[15] 董立俊, 董晓华, 曾 强, 等. 气候变化条件下雅砻江流域未来径流变化趋势研究[J]. 气候变化研究进展, 2019,15(6):596-606.
[16] 李炳元, 潘保田, 程维明, 等. 中国地貌区划新论[J]. 地理学报, 2013, 68(3): 291-306.
[17] 周长艳, 李跃清, 李 薇, 等. 青藏高原东部及邻近地区水汽输送的气候特征[J]. 高原气象, 2005, 24(6): 880-888.
[18] ZHONG L, MA Y, SALAMA M S, et al. Assessment of Vegetation Dynamics and Their Response to Variations in Precipitation and Temperature in the Tibetan Plateau[J]. Climatic Change, 2010, 103(3/4): 519-535.
[19] YANG K, YE B, ZHOU D, et al. Response of Hydrological Cycle to Recent Climate Changes in the Tibetan Plateau[J]. Climatic Change, 2011, 109(3/4): 517-534.
[20] 张秀红, 张文江, 蒋蕙如. 基于水量平衡的青藏高原东南部卫星降水产品质量评估与校正[J]. 地理与地理信息科学,2018,34(6):34-41.
[21] MAO T, WANG G, ZHANG T. Impacts of Climatic Change on Hydrological Regime in the Three-River Headwaters Region, China, 1960-2009[J]. Water Resources Management, 2016, 30(1): 115-131.
[22] GAO T, ZHANG T, CAO L, et al. Reduced Winter Runoff in a Mountainous Permafrost Region in the Northern Tibetan Plateau[J]. Cold Regions Science and Technology, 2016, 126: 36-43.
[23] ECKHARDT K. A Comparison of Baseflow Indices, Which were Calculated with Seven Different Baseflow Separation Methods[J]. Journal of Hydrology, 2008, 352(1/2):168-173.
[24] LYNE V, HOLLICK M. Stochastic Time-variable Rainfall-runoff Modelling[R].Perth, Australia: Institute of Engineers of Australia, 1979: 89-93.
[25] 林凯荣, 陈晓宏, 江 涛, 等. 数字滤波进行基流分割的应用研究[J]. 水力发电, 2008, 34(6): 28-30.
[26] 汤奇成, 程天文, 李秀云. 中国河川月径流的集中度和集中期的初步研究[J]. 地理学报, 1982, 49(4): 383-393.
[27] 彭贵康, 李志友, 柴复新. 雅安地形与降水的气候特征[J]. 高原气象, 1985, 4(3): 230-240.
[28] 彭贵康, 柴复新, 曾庆存, 等. “雅安天漏” 研究I: 天气分析[J]. 大气科学, 1994, 18(4): 466-475.
[29] WOO M K. Permafrost Hydrology[M]. Ontario, Canada: Springer Science & Business Media, 2012.
[30] YE B S, YANG D Q, ZHANG Z L, et al. Variation of Hydrological Regime with Permafrost Coverage over Lena Basin in Siberia[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D7), DOI: 10.1029/2008JD010537.
PDF(2251 KB)

Accesses

Citation

Detail

Sections
Recommended

/