Mechanical and Micro-structural Characteristics of Coastal Cement Soil Modified by Nano-MgO

ZHANG Chen, LI Na, WANG Wei, YUAN Jun-ping, JIANG Ping, WU Wang-yi, FU Ke-xian

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (4) : 135-139.

PDF(2307 KB)
PDF(2307 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (4) : 135-139. DOI: 10.11988/ckyyb.20180910
HE 28TH NATIONAL SYPOSIUM ON GEOTECHNICAL TESTING

Mechanical and Micro-structural Characteristics of Coastal Cement Soil Modified by Nano-MgO

  • ZHANG Chen1, LI Na1, WANG Wei1,2, YUAN Jun-ping3, JIANG Ping1, WU Wang-yi1, FU Ke-xian1
Author information +
History +

Abstract

To investigate the effect of nano-MgO on cement-treated seashore soil, mechanical test and microscopic test were conducted on nano-MgO modified cement-treated seashore soil (NmCS). The mechanical performances of NmCS samples with varied cement content and nano-MgO content were examined via indoor direct shear test. Furthermore, the micro-structural characteristics and mechanism were studied by using SEM technology. Test result unveiled that: (1) there exists an optimum content of nano-MgO for NmCS. Specifically in the test of the present research, the optimum content of nano-MgO is 10‰. (2) Cement-treated seashore soil in the absence of nano-MgO is dominated by loose-structure and small particles; while NmCS with 10‰ nano-MgO is the most compact, reflected as in the improvement of mechanical strength.

Key words

coastal cement soil / nano-MgO / shear strength / SEM / micro-structure / mix ratio

Cite this article

Download Citations
ZHANG Chen, LI Na, WANG Wei, YUAN Jun-ping, JIANG Ping, WU Wang-yi, FU Ke-xian. Mechanical and Micro-structural Characteristics of Coastal Cement Soil Modified by Nano-MgO[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(4): 135-139 https://doi.org/10.11988/ckyyb.20180910

References

[1] LIU Y,LEE F H, QUEK S T,et al. Effect of Spatial Variation of Strength and Modulus on the Lateral Compression Response of Cement-Admixed Clay Slab.Géotechnique,2015,65(10):851-865.
[2] 李 响, 李正平, 胡 贤, 等. 水泥-凝灰岩-粉煤灰复合胶凝材料硬化浆体微观结构特征.长江科学院院报, 2018, 35(5): 115-119.
[3] XIAO Hua-wen, WANG Wei, SIANG H G. Effectiveness Study for Fly Ash Cement Improved Marine Clay. Construction & Building Materials, 2017, 157: 1053-1064.
[4] PAN Yu-tao, LIU Yong, HU Jun, et al. Probabilistic Investigations on the Watertightness of Jet-Grouted Ground Considering Geometric Imperfections in Diameter and Position. Canadian Geotechnical Journal, 2017,54(10):1447-1459.
[5] HOU P K, CHENG X, QIAN J S. Characteristics of Surface-Treatment of Nano-SiO2 on the Transport Properties of Hardened Cement Pastes with Different Water-to-Cement Ratios . Cement & Concrete Composites, 2015, 55: 26-33.
[6] KONG D Y, DU X F, WEI S,et al. Influence of Nano-Silica Agglomeration on Microstructure and Properties of the Hardened Cement-Based Materials. Construction and Building Materials, 2012, 37: 707-715.
[7] NAZARI A, RIAHI S. Effects of Al2O3 Nanoparticles on Properties of Self Compacting Concrete with Ground Granulated Blast Furnace Slag (GGBFS) as Binder . Science China & Technological Sciences, 2011, 54(9): 2327-2338.
[8] KONG D Y, DU X F, WEI S, et al. Influence of Nano-Silica Agglomeration on Microstructure and Properties of the Hardened Cement-Based Materials . Construction and Building Materials, 2012, 37: 707-715.
[9] BAHMANI S H, HUAT B B K, ASADI A, et al. Stabilization of Residual Soil Using SiO2 Nanoparticles and Cement . Construction and Building Materials, 2014, 64: 350-359.
[10] CUI Hong-zhi, JIN, Zhi-yang, BAO Xiao-hua, et al. Effect of Carbon Fiber and Nanosilica on Shear Properties of Silty Soil and the Mechanisms . Construction and Building Materials, 2018, 189: 286-295.
[11] BO Y L, JAYAPALAN A R, KURTIS K E. Effects of Nano-TiO2 on Properties of Cement-Based Materials . Magazine of Concrete Research, 2013, 65(21):1293-1302.
[12] GAO L, REN Z, YU X J. Experimental Study of Nanometer Magnesium Oxide-Modified Clay . Soil Mechanics and Foundation Engineering, 2015, 52(4): 218-224.
[13] 王 伟,张 帅,张 芳,等. 纳米氧化镁改性水泥土一维固结压缩试验研究. 水利学报,2015, 46(增1): 84-89.
[14] LEE S, CHANG I, CHUNG M K,et al. Geotechnical Shear Behavior of Xanthan Gum Biopolymer Treated Sand from Direct Shear Testing . Geomechanics & Engineering, 2017, 12(5): 831-847.
[15] SANI J E, DAYO O A, GODWIN L Y, et al. Reliability Estimate of Unconfined Compressive Strength of Black Cotton Soil Stabilized with Cement and Quarry Dust . Leonardo Electronic Journal of Practices and Technologies, 2017, 16(30): 191-208.
[16] MOUSAVI S E. Stabilization of Compacted Clay with Cement and/or Lime Containing Peat Ash. Road Materials & Pavement Design, 2017,18(6):1304-1321.
[17] MOLA-ABASI H,KORDTABAR B,KORDNAEIJ A.Effect of Natural Zeolite and Cement Additive on the Strength of Sand. Geotechnical & Geological Engineering, 2016, 34(5):1-13.
PDF(2307 KB)

Accesses

Citation

Detail

Sections
Recommended

/