Experimental Study on Triaxial Creep Mechanical Behavior of Water-bearing Sandstone

ZHANG Chun-mei, CUI Guang-qin, BAO Xian-kai

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (11) : 57-61.

PDF(2715 KB)
PDF(2715 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (11) : 57-61. DOI: 10.11988/ckyyb.20180504
ROCK-SOIL ENGINEERING

Experimental Study on Triaxial Creep Mechanical Behavior of Water-bearing Sandstone

  • ZHANG Chun-mei, CUI Guang-qin, BAO Xian-kai
Author information +
History +

Abstract

The roof of roadway in mine has strong creep characteristics under the action of water, posing great threat to mine excavation and production. In this research we investigated the creep mechanical behavior of sandstone in different water-bearing conditions through triaxial rheological compression test. Test results showed that: (1) with the increase of water-saturation time and the climbing of stress level, instantaneous strain and creep both increased. (2) With the enhancement of water-bearing state, the initial creep rate and steady-state creep rate gradually increased, and the steady-state creep rate was in a power function relationship with the stress level.(3) By comparing two different long-term strength methods, we found that the long-term strength of sandstone under conditions of natural state, water-saturated for 1 day, and water-saturated for 5 days was only 64.12%, 62.08% and 59.34% of its instantaneous strength, respectively,and the long-term strength attenuation aggravated under the action of water.

Key words

sandstone / creep behavior / water-saturated / creep rate / long-term strength / triaxial compressive creep test

Cite this article

Download Citations
ZHANG Chun-mei, CUI Guang-qin, BAO Xian-kai. Experimental Study on Triaxial Creep Mechanical Behavior of Water-bearing Sandstone[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(11): 57-61 https://doi.org/10.11988/ckyyb.20180504

References

[1] 王红胜. 沿空巷道窄帮蠕变特性及其稳定性控制技术研究[D]. 徐州:中国矿业大学, 2011.
[2] 赵同彬, 张玉宝, 谭云亮,等. 考虑损伤效应深部锚固巷道蠕变破坏模拟分析[J]. 采矿与安全工程学报, 2014, 31(5):709-715.
[3] PHILLIPSON S E.Texture,Mineralogy,and Rock Strength in Horizontal Stress-related Coal Mine Roof Falls[J].International Journal of Coal Geology,2008,75(3):175-184.
[4] 巨能攀, 黄海峰, 郑 达,等. 考虑含水率的红层泥岩蠕变特性及改进伯格斯模型[J]. 岩土力学, 2016,37(增刊2):67-74.
[5] 刘秀敏, 蒋玄苇, 陈从新,等. 天然与饱水状态下石膏岩蠕变试验研究[J]. 岩土力学, 2017,38(增刊1):277-283.
[6] 李 男, 徐 辉, 胡 斌. 干燥与饱水状态下砂岩的剪切蠕变特性研究[J]. 岩土力学, 2012, 33(2):439-443.
[7] 李高阳. 水对煤岩蠕变力学特性影响的试验研究[D]. 西安:西安科技大学, 2017.
[8] 刘志河, 郑怀昌, 张晓君,等. 浅埋灰石膏矿岩单轴蠕变特性试验研究[J]. 化工矿物与加工, 2016,45(12):24-28.
[9] 付建新, 曹 师, 宋卫东,等. 考虑初始缺陷的超高矿柱蠕变分析及失稳滞后时间研究[J]. 中国矿业大学学报, 2017, 46(2):279-284.
[10]杨彩红, 王永岩, 李剑光,等. 含水率对岩石蠕变规律影响的试验研究[J]. 煤炭学报, 2007, 32(7):695-699.
[11]张春阳, 曹 平, 汪亦显,等. 自然与饱水状态下深部斜长角闪岩蠕变特性[J]. 中南大学学报(自然科学版), 2013, 44(4):1587-1595.
[12]李良权, 徐卫亚, 王 伟,等. 基于流变试验的向家坝砂岩长期强度评价[J]. 工程力学, 2010, 27(11):127-136.
[13]沈明荣, 谌洪菊. 红砂岩长期强度特性的试验研究[J]. 岩土力学, 2011, 32(11):3301-3305.
[14]张强勇, 杨文东, 陈 芳,等. 硬脆性岩石的流变长期强度及细观破裂机制分析研究[J]. 岩土工程学报, 2011, 33(12):1910-1918.
[15]TOMANOVIC Z, MILADINOVIC B, ZIVALJEVIC S. Criteria for Defining the Required Duration of a Creep Test[J]. Canadian Geotechnical Journal, 2014, 52(7): 34-37.
[16]王来贵,黄润秋,王泳嘉,等.岩石力学系统运动稳定性理论及其应用[M]. 北京:地质出版社, 1998:42-45.
PDF(2715 KB)

Accesses

Citation

Detail

Sections
Recommended

/