Three-dimensional Creep Constitutive Model and Critical Segment of Rock Based on Energy Consumption Theory

LU Gong-chen, ZHU Quan-peng, ZHOU Lin-lin

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (1) : 107-113.

PDF(1003 KB)
PDF(1003 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (1) : 107-113. DOI: 10.11988/ckyyb.20200954
ROCK-SOIL ENGINEERING

Three-dimensional Creep Constitutive Model and Critical Segment of Rock Based on Energy Consumption Theory

  • LU Gong-chen1, ZHU Quan-peng2, ZHOU Lin-lin3
Author information +
History +

Abstract

Determining the incipience of accelerated creep stage of rock is still a difficulty at present. With energy dissipation rate as a control threshold, we divided the creep of rock into critical segments in consideration of creep rate to reflect the whole process of creep. By applying the Perzyna viscoelastic-plastic theory to the Cvisc element model, we established a creep constitutive model to determine the incipience of accelerated creep stage and expanded into three-dimensional scale. Furthermore, we conducted triaxial compressive creep test on sandstone to analyze creep rate change, isochronous stress-strain relation, and extract critical segment parameters. In the meantime, we collected creep test data of mudstone and frozen soft rock in previous studies. We applied the proposed model to identify the aforementioned creep test data of sandstone, mudstone, and frozen soft rock. By comparing the test data with the modelled data, we verified the rationality and applicability of the model in characterizing creep behavior. The research findings offer a novel idea for creep staging and mechanics modelling.

Key words

energy consumption / rock / control threshold / creep rate / critical segment / constitutive model

Cite this article

Download Citations
LU Gong-chen, ZHU Quan-peng, ZHOU Lin-lin. Three-dimensional Creep Constitutive Model and Critical Segment of Rock Based on Energy Consumption Theory[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(1): 107-113 https://doi.org/10.11988/ckyyb.20200954

References

[1] 孙 钧. 岩土材料流变及其工程应用[M]. 北京: 中国建筑工业出版社, 1999.
[2] 梁 冰, 张 涛, 王俊光, 等. 片麻岩蠕变特性试验研究[J]. 实验力学, 2018, 33(3):451-460.
[3] 朱万成, 牛雷雷, 李少华, 等. 岩石蠕变-冲击试验研究—现状与展望[J].采矿与岩层控制工程学报, 2019, 1(2):77-87.
[4] 宋 飞. 石膏角砾岩非线性流变模型研究及有限元分析[D]. 西安:长安大学, 2006.
[5] SHIBATA K, TANI K, OKADA T. Creep Behavior of Tuffaceous Rock at High Temperature Observed in Unconfined Compression Test[J]. Soils and Foundations, 2007, 47(1): 1-10.
[6] STERPI D, GIODA G. Visco-plastic Behaviour around Advancing Tunnels in Squeezing Rock[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 319-339.
[7] 宋勇军, 雷胜友, 刘向科. 基于硬化和损伤效应的岩石非线性蠕变模型[J]. 煤炭学报, 2012, 37(增刊2):287-292.
[8] 周宏伟, 王春萍, 段志强, 等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学:物理学 力学 天文学, 2012, 42(3):310-318.
[9] 张 泷. 基于内变量热力学的流变模型及岩体结构长期稳定性研究[D]. 北京:清华大学, 2015.
[10] PING C,WEN Y,WANG Y,et al. Study on Nonlinear Damage Creep Constitutive Model for High-stress Soft Rock[J]. Environmental Earth Sciences,2016,75(10):1-8.
[11] 谢和平, 彭瑞东, 鞠 杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21):3565-3570.
[12] SIH G C. From Monoscale to Multiscale Modeling of Fatigue Crack Growth: Stress and Energy Density Factor[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(1): 39-50.
[13] 张 萍, 杨春和, 汪 虎, 等. 页岩单轴压缩应力-应变特征及能量各向异性[J]. 岩土力学, 2018, 39(6):2106-2114.
[14] ZHOU H W, WANG C P, HAN B B, et al. A Creep Constitutive Model for Salt Rock Based on Fractional Derivatives[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(1): 116-121.
[15] 张志镇. 岩石变形破坏过程中的能量演化机制[D]. 徐州:中国矿业大学, 2013.
[16] 郭永成, 王克辉, 胡 鹏, 等. 砂岩破坏特性与能量耗散的试验研究[J]. 力学与实践, 2019, 41(5):554-558.
[17] 王有涛. 海棠山隧道砂岩非定常蠕变及参数变化规律试验研究[D]. 阜新:辽宁工程技术大学,2016.
[18] 齐亚静, 姜清辉, 王志俭, 等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报, 2012, 31(2):347-355.
[19] 刘开云, 薛永涛, 周 辉. 基于改进Bingham模型的软岩参数非定常三维非线性黏弹塑性蠕变本构研究[J]. 岩土力学, 2018, 39(11):4157-4164.
[20] 黄海峰, 巨能攀, 黄 敏, 等. 软岩非线性蠕变损伤模型及其试验研究[J]. 水文地质工程地质, 2017, 44(3):49-54,60.
[21] 张春阳, 曹 平, 汪亦显, 等. 自然与饱水状态下深部斜长角闪岩蠕变特性[J]. 中南大学学报:自然科学版, 2013, 44(4):1587-1595.
[22] 李栋伟,汪仁和,范菊红.白垩系冻结软岩非线性流变模型试验研究[J].岩土工程学报,2011,33(3):398-403.
PDF(1003 KB)

Accesses

Citation

Detail

Sections
Recommended

/