Effect of Temperature on Mechanical Behaviors of Interlayer in Slope and Failure Mechanism

HE Gui-cheng, WANG Zhao, LI Feng-xiong, ZHU Ze-yong, ZHANG Qiu-cai, ZHANG Zhi-jun

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (7) : 64-69.

PDF(1648 KB)
PDF(1648 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (7) : 64-69. DOI: 10.11988/ckyyb.20171352
ROCK-SOILENGINEERING

Effect of Temperature on Mechanical Behaviors of Interlayer in Slope and Failure Mechanism

  • HE Gui-cheng, WANG Zhao, LI Feng-xiong, ZHU Ze-yong, ZHANG Qiu-cai, ZHANG Zhi-jun
Author information +
History +

Abstract

The effect of temperature on the mechanical behaviors of slope interlayer was investigated on direct shear test device with temperature control heating system. Seven interlayer specimens with different mix proportions of bentonite and river sand at varied moisture content (10%, 13%, 15%) were prepared for the test. The shear strength indexes of slope interlayer specimens at different temperatures were measured to further examine the failure mechanism. Results demonstrated that at a given temperature, cohesion and shear strength of interlayer specimens decreased with the shrinking of bentonite content; while with the climbing of temperature, specimens of high bentonite content experienced dramatic decline, gentle decline, and then finally dramatic decline again in terms of cohesion and shear strength. Moreover, such relation curve tended to be gentle and finally displayed a linear decline with the rising of moisture content. As temperature decreased, the resultant force of water in slope interlayer decreased correspondingly, which weakened the microstructural force among soil particles, resulting in a sharp reduction of cohesion; when temperature exceeded 50 ℃, cohesion decreased dramatically again because of slip of soil particles, giving rise to a critical failure state. Therefore, cohesion is a key factor inducing the failure of interlayer specimen, and the critical point of cohesion reducing dramatically again could be regarded as the indicator of the failure of slope interlayer.

Key words

slope with interlayer / temperature / shear strength / failure mechanism / moisture content

Cite this article

Download Citations
HE Gui-cheng, WANG Zhao, LI Feng-xiong, ZHU Ze-yong, ZHANG Qiu-cai, ZHANG Zhi-jun. Effect of Temperature on Mechanical Behaviors of Interlayer in Slope and Failure Mechanism[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(7): 64-69 https://doi.org/10.11988/ckyyb.20171352

References

[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454.
[2] 崔 鹏, 韦方强, 陈晓清, 等. 汶川地震次生山地灾害及其减灾对策[J]. 中国科学院院刊, 2008, 23(4): 317-323.
[3] VEGA J A, HIDALGO C A. Quantitative Risk Assessment of Landslides Triggered by Earthquakes and Rainfall Based on Direct Costs of Urban Buildings[J]. Geomorphology, 2016, 273: 217-235
[4] 周元辅, 邓建辉, 崔玉龙, 等. 基于强度折减法的三维边坡失稳判据[J]. 岩土力学, 2014, 35(5): 1430-1437.
[5] 夏开宗, 刘秀敏, 陈从新, 等. 考虑突变理论的顺层岩质边坡失稳研究[J]. 岩土力学, 2015, 36(2): 477-486.
[6] CHO S E. Stability Analysis of Unsaturated Soil Slopes Considering Water-air Flow Caused by Rainfall Infiltration[J]. Engineering Geology, 2016, 211: 184-197.
[7] SAITO H, MURAKAMI W, DAIMARU H, et al. Effect of Forest Clear-cutting on Landslide Occurrences: Analysis of Rainfall Thresholds at Mt. Ichifusa, Japan[J]. Geomorphology, 2016, 276: 1-7.
[8] 王维早, 许 强, 郑 光, 等. 强降雨诱发缓倾堆积层边坡失稳离心模型试验研究[J]. 岩土力学, 2016,37(1): 87-95.
[9] 秦 鸿. 软弱夹层边坡变形性状及其影响因素分析[J]. 重庆交通大学学报(自然科学版), 2011, 30(2): 282-286.
[10] HUANG M, WANG H, SHENG D, et al. Rotational Translational Mechanism for the Upper Bound Stability Analysis of Slopes with Weak Interlayer[J]. Computers & Geotechnics, 2013, 53(13): 133-141.
[11]许宝田, 阎长虹, 陈汉永, 等. 边坡岩体软弱夹层力学特性试验研究[J]. 岩土力学, 2008, 29(11): 3077-3081.
[12]VOIGHT B, FAUST C. Frictional Heat and Strength Loss in Some Rapid Landslides[J]. Geotechnique, 1982, 32(1): 43-54.
[13]CECINATO F, ZERVOS A, VEVEAKIS E. A Thermo-mechanical Model for the Catastrophic Collapse of Large Landslides[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(14): 1507-1535.
[14]JIMENEZ-PINILLA P, MATAIX-SOLERA J, ARCENEGUI V, et al. Advances in the Knowledge of How Heating Can Affect Aggregate Stability in Mediterranean Soils: A XDR and SEM-EDX Approach[J]. Catena, 2016, 147: 315-324.
[15]朱鸿鹄, 施 斌, 严珺凡, 等. 基于分布式光纤应变感测的边坡模型试验研究[J]. 岩石力学与工程学报,2013,32(4):821-828.
[16]MASAHIRO S, KENJI W, TAISUKE S, et al. Dynamic Behavior of Slope Models with Various Slope Inclinations[J]. Soils and Foundations, 2014, 55(1): 127-142.
[17]伍雪玲, 赵爱国. 衡阳市水文特性分析[J]. 湖南水利水电, 2010(4): 57-60.
[18]熊勇林, 朱合华, 叶冠林, 等. 降雨入渗引起非饱和土边坡破坏的水-土-气三相渗流-变形耦合有限元分析[J]. 岩土力学, 2017, 38(1): 284-290.
[19]常金源, 包 含, 伍法权, 等. 降雨条件下浅层滑坡稳定性探讨[J]. 岩土力学, 2015, 36(4): 995-1001.
[20]王一兆, 隋耀华. 降雨入渗对边坡浅层稳定性的影响[J]. 长江科学院院报, 2017, 34(4): 122-125.
[21]卢应发, 黄学斌, 刘德富. 边坡稳定分析条块力-位移法及其应用[J]. 岩土力学, 2015, 36(10): 2787-2798.
[22]蒋中明, 龙 芳, 熊小虎, 等. 边坡稳定性分析中的渗透力计算方法考证[J]. 岩土力学, 2015, 36(9): 2478-2486,2493.
[23]BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical Direct Shear Tests to Model the Shear Behavior of Rock Joints[J]. Computers and Geotechnics, 2013, 51: 101-115.
[24]曾纪全, 贺如平, 王建洪. 岩体抗剪强度试验成果整理及参数选取[J]. 地下空间与工程学报, 2006, 2(8): 1403-1407.
[25]齐剑峰, 张成兵, 宋雪琳,等. 滑带土含水率与力学参数关系试验研究[J]. 长江科学院院报, 2013, 30(7): 91-94,100.
[26]李亚伟, 郭永海, 王 驹. 膨润土性能温度效应研究进展[J]. 世界核地质科学, 2011, 28(2): 99-103.
[27]叶为民. 非饱和膨润土水-力学性状的温度效应研究进展[C]∥ 第二届废物地下处置学术研讨会论文集. 敦煌:中国岩石力学与工程学会,2008:8.
[28]叶为民, 申 淼, 王 琼. 温控高压实膨润土-砂混合物微观结构特征[J].佳木斯大学学报(自然科学版), 2013, 31(3): 321-324.
PDF(1648 KB)

Accesses

Citation

Detail

Sections
Recommended

/