PDF(1278 KB)
High Efficiency Synthesis of Calcium Aluminoferrite at Low Temperature Based on Self-propagating Combustion Reaction
WANG Jian, LEI Jin-song, FANG Guo-bao, QIAO Xin-wei, LI Yang, DONG Yun, YAN Jian-jun
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (9) : 146-152.
PDF(1278 KB)
PDF(1278 KB)
High Efficiency Synthesis of Calcium Aluminoferrite at Low Temperature Based on Self-propagating Combustion Reaction
Clinker calcination is a critical stage that influences the energy consumption in Portland cement production, and improving the efficiency of clinker manufacturing is a major concern in cement chemistry. This paper focuses on the synthesis of tetra-calcium aluminoferrite (C4AF) at low temperatures with soluble metallic nitrate and urea as raw materials using the self-propagating combustion reaction (SPCR) method. We systematically analyze the mineral phase composition, crystallinity, particle morphology, and hydration behavior of the synthesized C4AF using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and isothermal microcalorimetry. Our findings demonstrate that high-purity C4AF can be successfully synthesized via the SPCR method at 500 ℃ for 2 hours. The optimal raw material ratio by weight is ∶ ∶ ∶ =1.259∶1.0∶1.077∶2.664. CaCO3 is the only transient phase during the formation of C4AF. Increasing the urea dosage effectively raises reaction temperature and enhances the crystallinity of the synthesized C4AF. Additionally, the synthesized C4AF exhibits high hydration activity with only one peak observed in the hydration heat release curve during the initial 30 minutes. No dormancy period is observed, and the calculated hydration heat at complete hydration is 474 J/g.
portland cement / clinker / tetra-calcium aluminoferrite / self-propagating combustion reaction / low temperature
| [1] |
刘猛, 李百战, 姚润明. 水泥生产能源消耗内含碳排放量分析[J]. 重庆大学学报, 2011, 34(3): 116-120, 131.
(
|
| [2] |
|
| [3] |
|
| [4] |
张忠飞, 赵艳荣, 陈平, 等. 不同铁相含量高铁低钙水泥抗硫酸盐侵蚀研究[J]. 混凝土, 2023(1): 45-48.
(
|
| [5] |
高金瑞, 饶美娟, 张克昌, 等. 铁相组分对铁相和高铁低钙水泥熟料水化性能及抗侵蚀性能影响[J]. 硅酸盐通报. 2021, 40(4): 1097-1102.
(
|
| [6] |
胡成, 陈平, 张小平, 等. 不同铁相水泥的抗氯离子侵蚀和抗硫酸盐侵蚀性能研究[J]. 混凝土, 2020(10): 98-101.
(
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
钟白茜, 杨南如, 王国宾. 石膏和碱对铁铝酸四钙早期水化的影响[J]. 硅酸盐学报, 1983, 11(3): 297-305,386-388.
(
|
| [12] |
|
| [13] |
|
| [14] |
阎培渝, 郑峰. 水泥基材料的水化动力学模型[J]. 硅酸盐学报, 2006, 34(5): 555-559.
(
|
| [15] |
韩方晖, 王栋民, 阎培渝. 含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学[J]. 硅酸盐学报, 2014, 42(5): 613-620.
(
|
| [16] |
彭超, 于迪, 王斓懿, 等. 自蔓延燃烧法制备锰氧化物催化剂及其催化燃烧炭烟颗粒[J]. 化工进展, 2022, 41(2): 770-780.
(
|
| [17] |
吴建鹏, 朱振峰. XRD中扫描速度对物相分析的影响[J]. 热加工工艺, 2003, 32(4): 53-54.
(
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
杨南如, 岳文海. 无机非金属材料图谱手册[M]. 武汉: 武汉工业大学出版社, 2000: 68.
(
|
| [22] |
陆平. 水泥材料科学导论[M]. 上海: 同济大学出版社, 1991: 106.
(
|
/
| 〈 |
|
〉 |