Investigation on Influence of Underlying Karst on Bearing Capacity of Pile Foundation by Finite Difference Method

XIE Shu-meng

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (4) : 77-81.

PDF(2387 KB)
PDF(2387 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (4) : 77-81. DOI: 10.11988/ckyyb.20171226
ROCK-SOIL ENGINEERING

Investigation on Influence of Underlying Karst on Bearing Capacity of Pile Foundation by Finite Difference Method

  • XIE Shu-meng
Author information +
History +

Abstract

To investigate the influence of underlying karst on pile foundation’s bearing capacity, orthogonal tests were simulated in FLAC3D under different karst conditions—five different thicknesses and widths of karst roof, five different heights of karst cave, and three different types of surrounding rock—based on field static load test. Results demonstrated that given the same other circumstances, the bearing capacity of pile foundation is directly proportional to the thickness of cave roof and strength of surrounding rocks, inversely proportional to the width of cave roof, and has no direct relation with cave height. Karst caves and other weak substratum affects the upper pile foundation within a depth maximum to three times pile diameter. Further increasing the thickness of cave roof has little effect on improving the ultimate bearing capacity of pile foundation. Cave size has little effect on pile’s bearing capacity when cave size is close to pile diameter(L≤2D), but reduces the ultimate bearing capacity evidently when cave size continues to grow. The bearing capacity grows apparently with the increase of rock mass strength when the strength is below 11.5 MPa, but the growth is not obvious when the strength is over 11.5 MPa.

Key words

pile foundation / bearing capacity / underlying karst / finite difference method / static load test / orthogonal numerical test

Cite this article

Download Citations
XIE Shu-meng. Investigation on Influence of Underlying Karst on Bearing Capacity of Pile Foundation by Finite Difference Method[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(4): 77-81 https://doi.org/10.11988/ckyyb.20171226

References

[1] 康厚荣. 岩溶地区公路修筑理论与实践. 北京:人民交通出版社, 2006.
[2] 赵明华,邹新军,刘齐建. 洞庭湖软土地区大直径超长灌注桩竖向承载力试验研究. 土木工程学报,2004,37(10):63-67.
[3] 赵明华,雷 勇,刘晓明. 基于桩–岩结构面特性的嵌岩桩荷载传递分析. 岩石力学与工程学报,2009,28(1):103-110.
[4] WU Wen-bin, WANG Kui-hua, ZHANG Zhi-qin. A New Approach for Time Effect Analysis of Settlement for Single Pile Based on Virtual Soil-pile Model. Journal of Central University, 2012, 19(9): 2656-2662.
[5] 江 杰,陈 骏,肖 萌,等. 南宁软岩地基大直径灌注桩极限承载力预测. 长江科学院院报,2017,34(12): 73-77.
[6] 赵明华,周 磊,雷 勇. 基于H-B强度理论的桩端岩层安全厚度确定. 湖南大学学报(自然科学版),2010,37(6): 1-5.
[7] 曹文贵,李 媛,翟友成. 基于Info-Gap理论的基桩下伏岩溶顶板稳定性的主动分析方法. 岩石力学与工程学报,2013,32(2):393-400.
[8] 蒋建平,章杨松,高广运. 基于现场试验的超长桩端阻力承载性状研究. 工程力学,2010,27(2):149-160.
[9] 曹文贵,程 晔,赵明华. 公路路基岩溶顶板安全厚度确定的数值流形方法研究. 岩土工程学报,2005,27(6): 621-625.
[10] 赵明华,蒋 冲,曹文贵. 岩溶区嵌岩桩承载力及其下伏溶洞顶板安全厚度的研究. 岩土工程学报,2007,29(11): 1618-1622.
[11] 黄生根,梅世龙,龚维明. 南盘江特大桥岩溶桩基承载特性的试验研究. 岩石力学与工程学报,2004,23(5): 809-813.
[12] 刘铁雄. 岩溶顶板与桩基作用机理分析与模拟试验研究. 长沙:中南大学, 2003.
[13] JGJ 106—2003,建筑桩基检测技术规范. 北京:中国建筑工业出版社, 2003.
[14] HOEK E, BROWN E T. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences,1997, 34(8): 1165-1186.
PDF(2387 KB)

Accesses

Citation

Detail

Sections
Recommended

/