Effects of Steel-PVA Hybrid Fiber on Shear Performance of Self-compacting Concrete Beams

LI Qing-wen, CAO Hang, YANG Lu, WANG Xue-zhi, LIU Hua-xin

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (10) : 121-127.

PDF(9456 KB)
PDF(9456 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (10) : 121-127. DOI: 10.11988/ckyyb.20210726
HYDRAULIC STRUCTURE AND MATERIAL

Effects of Steel-PVA Hybrid Fiber on Shear Performance of Self-compacting Concrete Beams

  • LI Qing-wen, CAO Hang, YANG Lu, WANG Xue-zhi, LIU Hua-xin
Author information +
History +

Abstract

The shear behavior of self-compacting concrete beams with hybrid steel fiber (SF)-polyvinyl alcohol (PVA) fiber was studied through tests with different volumetric dosages of the SF-PVA hybrid fiber,different hybrid ratios of the two fibers,and varied spacing of stirrups.Test results manifested that adding SF or PVA fiber into concrete beams could effectively restrain the generation and propagation of cracks and improve the shear capacity of beams.The specimen with stirrup spacing of 150 mm,volumetric dosage of 1% and hybrid ratio of 1∶1 has the maximum cracking load and shear capacity.Under the same volumetric content and hybrid ratio,reducing the stirrup spacing could remarkably reduce the ultimate load value of the beam,but has little effect on the crack load value of the beam.In addition,a BP neural network model for strength prediction was established with SF's volumetric content,PVA fiber's volumetric content,and stirrup spacing as input layer and ultimate shear as output layer.Ultimate shear force was fitted and the prediction result was accurate.

Key words

self-compacting concrete beam / SF / PVA / hybrid ratio / shear bearing capacity / BP neural network

Cite this article

Download Citations
LI Qing-wen, CAO Hang, YANG Lu, WANG Xue-zhi, LIU Hua-xin. Effects of Steel-PVA Hybrid Fiber on Shear Performance of Self-compacting Concrete Beams[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(10): 121-127 https://doi.org/10.11988/ckyyb.20210726

References

[1] 钟光淳,周 颖,肖 意.钢-聚乙烯醇混杂纤维混凝土单轴受力应力-应变曲线研究[J].工程力学,2020,37(增刊1):111-120.
[2] 张广泰,张路杨,邢国华,等.钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J].吉林大学学报(工学版),2021,1(3):946-955.
[3] GHALEHNOVI M,KARIMIPOUR A,DE BRITO J.Influence of Steel Fibers on the Flexural Performance of Reinforced Concrete Beams with Lap-Spliced Bars[J].Construction and Building Materials,2019,229:116853.
[4] 陕 亮,张 亮.混杂钢-聚丙烯纤维混凝土的试验研究与强度计算[J].长江科学院院报,2015,32(12):114-119.
[5] CHABOKI H R,GHALEHNOVI M,KARIMIPOUR A,et al.Shear Behaviour of Concrete Beams with Recycled Aggregate and Steel Fibres[J].Construction and Building Materials,2019,204:809-827.
[6] HAWILEH R A,NAWAZ W,ABDALLA J A.Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with Hardwire Steel-fiber Sheets[J].Construction and Building Materials,2018,172:562-573.
[7] GALI S,SUBRAMANIAM K V L.Improvements in Fracture Behavior and Shear Capacity of Fiber Reinforced Normal and Self Consolidating Concrete:A Comparative Study[J].Construction and Building Materials,2018,189:205-217.
[8] AHMADI M,KHEYRODDIN A,DALVAND A,et al.New Empirical Approach for Determining Nominal Shear Capacity of Steel Fiber Reinforced Concrete Beams[J].Construction and Building Materials,2020,234:117293.
[9] 尹世平,李 耀,刘 鸣,等.改性纤维编织网增强混凝土加固钢筋混凝土柱抗震性能[J].同济大学学报(自然科学版),2019,47(5):609-616,626.
[10] 邓明科,刘华政,马福栋,等.聚乙烯醇纤维改性高延性混凝土双面剪切试验及剪切韧性评价方法[J].复合材料学报,2020,37(2):461-471.
[11] 刘曙光,白 茹,张 菊,等.配筋聚乙烯醇纤维增强水泥复合材料梁的曲率延性[J].复合材料学报,2020,37(2):451-460.
[12] 孟志良,孙建恒,王国栋.自密实混凝土梁抗弯性能试验研究[J].工业建筑,2011,41(1):97-100,129.
[13] 黄 晖,叶燕华,韩 娟,等.自密实混凝土受弯梁受力性能试验[J].南京工业大学学报(自然科学版),2011,33(1):95-100.
[14] TENG S,AFROUGHSABET V,OSTERTAG C P.Flexural Behavior and Durability Properties of High Performance Hybrid-fiber-reinforced Concrete[J].Construction and Building Materials,2018,182:504-515.
[15] 范 炜,陈 峰.玄武岩纤维混凝土抗压试验有限元分析[J].防灾减灾工程学报,2019,39(5):858-861.
[16] 何 军,黄书岭,丁秀丽,等.地下洞室围岩喷钢纤维混凝土抗弯细观机理的三维离散元分析[J].长江科学院院报,2020,37(11):164-171.
[17] 宋守坛,曹 天,端 宁,等.CFRP筋增强钢纤维混凝土梁受剪承载力试验与分析[J].防灾减灾工程学报,2021,41(5):1012-1019.
[18] 朱 平,池颜海,易笃韬,等.混杂钢纤维对钢纤维–超高性能混凝土界面黏结性能的影响[J].硅酸盐学报,2020,48(10):1669-1681.
[19] 邓宗才,陈春生,陈兴伟.混杂纤维活性粉末混凝土梁抗剪性能试验研究[J].土木工程学报,2015,48(5):51-60.
[20] 尤志国,丁一宁,王宝民.钢纤维替代自密实混凝土梁箍筋的试验研究[J].建筑材料学报,2010,13(5):595-600.
[21] 尤志国.混杂纤维自密实混凝土梁式构件的弯剪性能[D].大连:大连理工大学,2010.
[22] 尤志国,付秀艳,王兴国,等.混杂纤维-钢筋自密实混凝土T梁抗剪性能的试验研究[J].工业建筑,2017,47(4):65-70.
[23] 丁一宁,达布希拉图,尤志国.不同纤维替代自密实混凝土梁中抗剪箍筋的试验研究[J].水利学报,2011,42(9):1088-1094.
[24] 达布希拉图,丁一宁,尤志国.混杂纤维增强钢筋自密实混凝土梁抗剪试验研究[J].建筑科学,2010,26(3):6-10.
[25] JGJ/T 283—2012,自密实混凝土应用技术规程[S].北京:中国建筑工业出版社,2012.
[26] JGJ 55—2011,普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2011.
[27] EFNARC.Specification and Guidelines For Self-Compacting Concrete.2002 Edition[S].Farnham,UK:EFNARC,2002.
[28] OZGAN E.Artificial Neural Network Based Modelling of the Marshall Stability of Asphalt Concrete[J].Expert Systems With Applications,2011,38(5):6025-6030.
[29] DENG Jian,GU De-sheng,LI Xi-bing,et al.Structural Reliability Analysis for Implicit Performance Functions Using Artificial Neural Network[J].Structural Safety,2004,27(1):25-48.
PDF(9456 KB)

Accesses

Citation

Detail

Sections
Recommended

/