Application of Comprehensive Graph Weight Method to Landslide Deformation Prediction

WANG Xing-ke, WANG Juan

Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (7) : 82-86.

PDF(1758 KB)
PDF(1758 KB)
Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (7) : 82-86. DOI: 10.11988/ckyyb.20160691
ROCK-SOIL ENGINEERING

Application of Comprehensive Graph Weight Method to Landslide Deformation Prediction

  • WANG Xing-ke, WANG Juan
Author information +
History +

Abstract

The aim of this research is to improve the accuracy of predicting landslide deformation. Firstly, trend terms and error terms were isolated through denoising the deformation data by using Kalman filter. Then comprehensive graph weight method was employed to determine the combinatorial weights for trend terms. Furthermore, neural network model was adopted to the prediction for error terms. Results suggest that the effect of half parameters and half Kalman filter method is the optimum. The present model has improved prediction accuracy, and is verified to be of feasibility.

Key words

landslide / deformation prediction / regression model / neural network / comprehensive graphic weight method

Cite this article

Download Citations
WANG Xing-ke, WANG Juan. Application of Comprehensive Graph Weight Method to Landslide Deformation Prediction[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(7): 82-86 https://doi.org/10.11988/ckyyb.20160691

References

[1] 陈冠宇,文鸿雁,周 吕,等. 基于Kalman滤波下的高铁隧道沉降变形评估方法[J]. 桂林理工大学学报,2013,33(4):671-676.
[2] 王 成,何美琳,覃 婕,等. 半参数Kalman滤波模型在GPS变形数据处理中的应用[J]. 施工技术,2015,44(增刊):818-821.
[3] 魏小楠. 曲线回归分析模型在滑坡预测中的应用[J]. 华东公路,2008,(3):65-67.
[4] 王秀丽,李恒凯. 滑坡变形的回归-神经网络预测模型研究[J]. 人民黄河,2012,34(7):90-92.
[5] 曹洋兵,晏鄂川,谢良甫. 考虑环境变量作用的滑坡变形动态灰色-进化神经网络预测研究[J]. 岩土力学,2012,33(3):848-852.
[6] 李秀珍,王芳其. 滑坡变形的多因素小波神经网络预测模型[J]. 水土保持通报,2012,32(5):235-238.
[7] 李秀珍,王成华,孔纪名. 基于最优加权组合模型及高斯-牛顿法的滑坡变形预测研究[J]. 工程地质学报,2009,17(4):538-544.
[8] 隆 然,董志勇. 基于小波去噪和神经网络的滑坡变形组合预测研究[J]. 路基工程,2015,(6):33-39.
[9] 罗 林,左昌群,赵 连,等. 基于BP神经网络和R/S分析的隧道仰坡沉降变形预报预测[J]. 施工技术,2014,(11):80-84.
[10]秦 鹏,张喆瑜,秦植海,等. 滑坡体监测数据的改进变维分形-人工神经网络耦合预测模型[J]. 长江科学院院报,2012,29(3):29-34.
PDF(1758 KB)

Accesses

Citation

Detail

Sections
Recommended

/