Most energy dissipation formula are applicable to rectangular wing wall sections. In view of this, the most unfavorable condition of energy dissipation for diffusing trapezoidal wing of sluice wall was investigated according the hydraulics theory, the mathematical function theory and the dimensionless principle. Analytical formulas of the relative contracted water depth and the relative water depth after jump were deduced.By using Matlab software for numerical analysis and mathematical derivation, simple formulas were given to calculate the extremes of pool depth and water jump length of the stilling basin of coastal tidal drainage sluice influenced by tide level. Through engineering example calculation, the analytic formulas are proved to be convenient with high precision and reliability.
Key words
engineering hydraulics /
sluice /
the most unfavorable conditions of energy dissipation /
diffusion trapezoidal wing wall /
depth of stilling pool /
water jump length
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 浙江省水利水电勘测设计院.舟山市六横小郭巨围垦工程初步设计[R]. 杭州:浙江省水利水电勘测设计院,2010.
[2] SL265—2001,水闸设计规范[S]. 北京:中国水利水电出版社,2001.
[3] 黄朝煊, 王贺瑶, 王正中,等. 消力池最不利条件下池深极值探讨[J].水力发电学报,2015,34(1):79-84.
[4] 谢景惠, 陈菊清. 消力池最不利设计条的分析与计算[J]. 水利水电技术, 1995,(12):7-11.
[5] 田嘉宁, 安田阳一, 李建中. 台阶式泄水建筑物的消能分析 [J]. 水力发电学报, 2009,28(2):96-100.
[6] BAKHTYAR R,BARRY D A. Optimization of Cascade Stilling Basins Using GA and PSO Approaches [J]. Journal of Hydroinformatics, 2009,11(2):119-132.
[7] BAKHTYAR R, MOUSAVI S J, AFSHAR A. Dynamic-programming Approach to Optimal Design of Cascade Stilling Basins [J]. Journal of Hydraulic Engineering,2007,133(8):949-954.
[8] 田嘉宁, 赵 庆, 范留明. 台阶式溢流坝后消力池压强特性[J]. 水力发电学报, 2012, 31(4): 113-118.
[9] 刘 璐, 张建民, 余 飞, 等. 重力坝下游宽尾墩和消力池联合消能工水力特性试验研究 [J]. 水力发电学报, 2012, 31(2): 49-55.
[10]黄朝煊. 梯形断面消力池扩散型消能计算[J]. 水利水电科技进展, 2016,36(5):34-39.
[11]黄朝煊. 梯形明渠水力学特征水深的解析计算式研究[J]. 灌溉排水学报, 2016, 35(3): 73-77.
[12]黄朝煊. 梯形渠道恒定渐变流水面线计算的新解析法[J]. 长江科学院院报, 2012, 29(11): 46-49.