Mechanical Characteristics and Damage Constitutive Model of Quartzite under Freeze-thaw Cycles

HOU Zhao-xu, LIU Xian-feng, WANG Tong, ZHANG Jun, YUAN Sheng-yang, HU Jin-shan

Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 177-185.

PDF(3051 KB)
PDF(3051 KB)
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 177-185. DOI: 10.11988/ckyyb.20231018
Rock-Soil Engineering

Mechanical Characteristics and Damage Constitutive Model of Quartzite under Freeze-thaw Cycles

Author information +
History +

Abstract

There are a large number of rock slopes in the difficult and dangerous mountainous areas of southwest China. Long-term freeze-thaw action deteriorates the mechanical properties of the rock mass, leading to decreased slope stability. To study the damage degradation law of rock mass under freeze-thaw action, uniaxial compression tests were conducted on low-porosity quartzite from a high and steep slope in the southwest hazardous mountainous area. The mechanical deterioration and energy evolution were analyzed. Based on the energy evolution law, a method for determining the complete compaction point of rock was proposed. A piecewise damage constitutive model of the rock in consideration of the compaction section was established by taking the complete compaction point as the piecewise point. Results show that early freeze-thaw cycles have little effect on the quartzite. However, when the number of freeze-thaw cycles exceeds 40, the mechanical properties of quartzite deteriorate significantly, and the failure mode gradually changes from shear failure to a combination of tensile and shear failure. The point corresponding to an elastic energy consumption ratio K (ratio of dissipated energy to elastic energy) of 1.2 is determined as the complete compaction point. The strain corresponding to the complete compaction point increases linearly with the increase in freeze-thaw cycles. The proposed piecewise damage constitutive model matches well with experimental data and more accurately describes the deformation and failure characteristics of freeze-thaw damaged quartzite.

Key words

freeze-thaw cycles / quartzite / mechanical degradation / energy evolution / complete compaction point / piecewise damage constitutive model

Cite this article

Download Citations
HOU Zhao-xu , LIU Xian-feng , WANG Tong , et al . Mechanical Characteristics and Damage Constitutive Model of Quartzite under Freeze-thaw Cycles[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(1): 177-185 https://doi.org/10.11988/ckyyb.20231018

References

[1]
王通, 刘先峰, 侯召旭, 等. 碎裂状顺层岩质边坡地震动力响应与破坏模式[J]. 工程科学与技术, 2023, 55(2): 39-49.
(WANG Tong, LIU Xian-feng, HOU Zhao-xu, et al. Seismic Dynamic Response and Failure Mode of Cracked Bedding Rock Slope[J]. Advanced Engineering Sciences, 2023, 55(2): 39-49. (in Chinese))
[2]
申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 2016, 38(10): 1775-1782.
(SHEN Yan-jun, YANG Geng-she, RONG Teng-long, et al. Proposed Scheme for Freeze-thaw Cycle Tests on Rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775-1782. (in Chinese))
[3]
闻磊, 李夕兵, 苏伟. 冻融循环影响下金属矿山边坡坚硬岩石物理力学性质研究[J]. 采矿与安全工程学报, 2015, 32(4): 689-696.
(WEN Lei, LI Xi-bing, SU Wei. Study of Physico-mechanical Characteristics of Slope Hard Rocks of Metal Mine Influenced by Freeze-thaw Cycles[J]. Journal of Mining & Safety Engineering, 2015, 32(4): 689-696. (in Chinese))
[4]
朱珍德, 色麦尔江·麦麦提玉苏普, 方若进, 等. 冻融循环作用下砂岩卸荷强度特性试验及损伤特性研究[J]. 长江科学院院报, 2018, 35(3):1-5,12.
Abstract
建立在寒区的岩土工程,其岩石的损伤劣化不仅受冻融风化作用,而且还受到开挖卸荷的影响。采用冻融循环试验和三轴卸荷试验相结合的方法,对砂岩同时受2种破坏作用的强度特性和损伤特性进行系统的分析。分析结果表明:随围压的增加,冻融循环下岩石的破坏特性由张拉破坏逐渐转变为剪切破坏特征,随着冻融次数的增加,岩样明显产生侧向膨胀,侧边中部明显向外凸出,并出现了不同级别的张裂纹、环向裂纹及许多岩粉和岩石碎块;对于三轴卸荷试验,岩样的峰值强度随着冻融次数的增加而降低;扩容应力随冻融次数增加呈指数下降关系;破坏围压与冻融次数呈二次函数关系;冻融损伤值随冻融次数增加呈线性增长,表明岩样的损伤受冻融的影响逐渐增大。研究成果可为寒区岩土工程设计和施工提供指导。
(ZHU Zhen-de, Semerjan Memetyusup, FANG Ruo-jin, et al. Unloading Strength Characteristics and Damage Characteristics of Sandstone under Freeze-thaw Cycles[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(3): 1-5, 12. (in Chinese))
Geotechnical projects in cold regions suffer from both cyclic freezing-thawing and excavation unloading, giving rise to rock degradation. In this article, the strength characteristics and damage characteristics of sandstone subjected to both cyclic freezing-thawing and excavation unloading are analyzed systematically by freeze-thaw cycle test and triaxial unloading test. The results are concluded as follows: in freeze-thaw cycle test, the sandstone experienced a stage from tension failure gradually to shear failure as confining pressure rises; as the freeze-thaw cycle proceeds, the sandstone witnessed an apparent lateral expansion in the middle, with different levels of tension cracks, circular cracks, rock powder and rock fragments; while in triaxial unloading test, as freezing-thawing proceeds, the peak strength of sandstone reduces, and dilatancy stress declines in an exponential relation; destructive confining pressure is in a quadratic functional relation with cycle number; moreover, the freeze-thaw damage value increases linearly with the number of freeze-thaw cycles, indicating that the effect of cyclic freezing and thawing intensifies gradually.
[5]
杨鸿锐, 刘平, 孙博, 等. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(3): 545-555.
(YANG Hong-rui, LIU Ping, SUN Bo, et al. Study on Damage Mechanisms of the Microstructure of Sandy Conglomerate at Maijishan Grottoes under Freeze-thaw Cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 545-555. (in Chinese))
[6]
宋勇军, 程柯岩, 孟凡栋. 冻融作用下裂隙岩石损伤破坏声发射特性研究[J]. 采矿与安全工程学报, 2023, 40(2): 408-419.
(SONG Yong-jun, CHENG Ke-yan, MENG Fan-dong. Research on Acoustic Emission Characteristics of Fractured Rock Damage under Freeze-thaw Action[J]. Journal of Mining & Safety Engineering, 2023, 40(2): 408-419. (in Chinese))
[7]
刘慧, 杨更社, 申艳军, 等. 冻融-受荷协同作用下砂岩细观损伤演化CT可视化定量表征[J]. 岩石力学与工程学报, 2023, 42(5):1136-1149.
(LIU Hui, YANG Geng-she, SHEN Yan-jun, et al. CT Visual Quantitative Characterization of Meso-damage Evolution of Sandstone under Freeze-thaw-loading Synergistic Effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1136-1149. (in Chinese))
[8]
宋彦琦, 刘济琛, 邵志鑫, 等. 冻融循环条件下灰岩物理力学性能试验[J]. 科学技术与工程, 2020, 20(2):741-746.
(SONG Yan-qi, LIU Ji-chen, SHAO Zhi-xin, et al. Experimental Study on Physical and Mechanical Properties of Limestone under Freeze-thaw Cycles[J]. Science Technology and Engineering, 2020, 20(2):741-746. (in Chinese))
[9]
汤明高, 许强, 邓文锋, 等. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律[J]. 地球科学, 2022, 47(6): 1917-1931.
(TANG Ming-gao, XU Qiang, DENG Wen-feng, et al. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-thaw and Unloading Conditions[J]. Earth Science, 2022, 47(6): 1917-1931. (in Chinese))
[10]
QIN L, ZHAI C, LIU S, et al. Changes in the Petrophysical Properties of Coal Subjected to Liquid Nitrogen Freeze-thaw—a Nuclear Magnetic Resonance Investigation[J]. Fuel, 2017,194:102-114.
[11]
牛亮, 穆锐, 陈俊. 含天然微裂隙岩石的力学特性试验研究[J]. 长江科学院院报, 2020, 37(2): 141-146.
Abstract
为研究含天然微裂隙岩石的劈裂力学特性及微观结构,对含天然微裂隙岩石进行单轴压缩试验、劈裂试验与SEM扫描试验。分析了微裂隙岩石单轴压缩试验及劈裂试验的破坏形式、抗拉强度的变化规律,并对劈裂破坏形式中岩石较为破碎部分进行微观结构分析。研究结果表明:在单轴压缩试验中,天然微裂隙岩石破坏形式主要表现为张拉破坏、沿天然裂隙面剪切破坏以及拉剪复合破坏;天然微裂隙倾角对岩石抗拉强度影响较大,其抗拉强度随微裂隙倾角增大而增大;岩样发生劈裂破坏后较为破碎的部分,其劈裂力学特性主要受天然微裂隙岩石的微观结构决定,其微观结构主要分为根状结构、雾区结构、台阶结构3种形式,根状结构微裂隙岩石的力学性质最差,台阶结构微裂隙岩石的力学性质最好。研究成果可为天然微裂隙岩石的力学特性理论研究及其工程应用提供参考依据。
(NIU Liang, MU Rui, CHEN Jun. Experimental Study on Mechanical Properties of Rock Containing Natural Micro-fractures[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(2): 141-146. (in Chinese))
Uniaxial compression test, splitting test and SEM scanning test were performed to investigate the splitting mechanical properties and microstructure of rock containing natural microfractures. The failure modes and tensile strength of rock containing natural microfractures undergone uniaxial compression test and splitting test were analysed; the microstructure of the broken part of rock specimens of splitting failure mode was examined as well. In uniaxial compression test, the failure modes of rock specimens containing natural microfractures were mainly tension failure, shear failure along natural fracture surface, and tension-shear composite failure; the dip angle of natural microfracture had a remarkable influence on the tensile strength of rock which increased with the increase of dip angle. On the other hand, after splitting failure, the splitting mechanical properties were largely determined by the microstructure of natural microfractures which can be classified as three types, namely, root structure, fog area structure, and step structure, among which root structure had the most inferior mechanical properties whereas step structure was of good mechanical properties.
[12]
王桂林, 杨证钦, 张亮, 等. 干湿循环节理砂岩单轴压缩声发射演化特征[J]. 长江科学院院报, 2023, 40(2): 81-86, 94.
Abstract
干湿循环对岩石造成不可逆的累积损伤,而岩石的变形破坏过程伴随着明显的声学特征。为探讨干湿循环后节理砂岩变形破裂机理,通过开展节理砂岩室内单轴压缩试验,采用声发射测试技术监测岩样损伤破坏的声学数据,研究历经0、1、5、10、15、20次干湿循环作用后的完整、单节理、双节理砂岩岩样在变形破裂过程中声发射参数的演化特征。结果表明:随着干湿循环次数的增加,砂岩岩样峰后塑性特征逐渐增强,声发射活动表现存在微弱、增强、陡增、剧烈4个阶段;随着干湿循环次数的增加,节理岩样声发射剧烈活动阶段的持续时间、累计振铃计数的降幅以及变形破坏过程中的声发射b值均呈逐步增大的趋势;各种干湿循环次数情况下完整岩样的声发射b值均大于节理岩样。研究成果可为干湿循环下节理岩体变形破坏机理研究提供有益的参考。
(WANG Gui-lin, YANG Zheng-qin, ZHANG Liang, et al. Acoustic Emission Evolution Characteristics of Jointed Sandstone at Drying-Wetting Damage under Uniaxial Compression[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2): 81-86, 94. (in Chinese))
[13]
谭皓, 宋勇军, 郭玺玺, 等. 冻融裂隙砂岩细观损伤与应变局部化研究[J]. 岩石力学与工程学报, 2022, 41(12):2485-2496.
(TAN Hao, SONG Yong-jun, GUO Xi-xi, et al. Research on Meso-damage and Strain Localization of Fractured Sandstone after Freeze-thaw Cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(12): 2485-2496. (in Chinese))
[14]
楚亚培, 张东明, 王满, 等. 基于核磁共振技术和压汞法的液氮冻融煤体孔隙结构损伤演化规律试验研究[J]. 岩石力学与工程学报, 2022, 41(9): 1820-1831.
(CHU Ya-pei, ZHANG Dong-ming, WANG Man, et al. Experiment Study on Influence of Liquid Nitrogen Freeze-thaw on Pore Structure of Coal Based on Nuclear Magnetic Resonance Technology and Mercury Intrusion Methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1820-1831. (in Chinese))
[15]
杨更社, 申艳军, 贾海梁, 等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报, 2018, 37(3): 545-563.
(YANG Geng-she, SHEN Yan-jun, JIA Hai-liang, et al. Research Progress and Tendency in Characteristics of Multi-scale Damage Mechanics of Rock under Freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 545-563. (in Chinese))
[16]
张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476.
(ZHANG Hui-mei, YANG Geng-she. Research on Damage Model of Rock under Coupling Action of freeze-thaw and Load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476. (in Chinese))
[17]
张慧梅, 谢祥妙, 彭川, 等. 三向应力状态下冻融岩石损伤本构模型[J]. 岩土工程学报, 2017, 39(8):1444-1452.
(ZHANG Hui-mei, XIE Xiang-miao, PENG Chuan, et al. Constitutive Model for Damage of Freeze-thaw Rock under Three-dimensional Stress[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1444-1452. (in Chinese))
[18]
肖鹏, 陈有亮, 杜曦, 等. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究[J]. 岩土工程学报, 2023, 45(4): 805-815.
(XIAO Peng, CHEN You-liang, DU Xi, et al. Mechanical Properties of Sandstone under Freeze-thaw Cycles and Studies on Meso-damage Constitutive Model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. (in Chinese))
[19]
许梦飞, 姜谙男, 张勇, 等. 基于Hoek-Brown准则的岩体冻融-荷载耦合损伤模型及其算法研究[J]. 应用基础与工程科学学报, 2021, 29(3): 702-717.
(XU Meng-fei, JIANG An-nan, ZHANG Yong, et al. A Coupling Damage Model under Freeze-thaw Cycles and Loading Based on Hoek-Brown Criterion and Its Algorithm Research[J]. Journal of Basic Science and Engineering, 2021, 29(3): 702-717. (in Chinese))
[20]
候超, 靳晓光, 何杰, 等. 基于最大拉应变准则的冻融岩石损伤模型研究[J]. 西南交通大学学报, 2023, 58(5): 1045-1055.
(HOU Chao, JIN Xiao-guang, HE Jie, et al. Research on Damage Model of Rock under Freeze-thaw Cycles Based on Maximum Tensile Strain Criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1045-1055. (in Chinese))
[21]
刘泉声, 黄诗冰, 康永水, 等. 岩体冻融疲劳损伤模型与评价指标研究[J]. 岩石力学与工程学报, 2015, 34(6):1116-1127.
(LIU Quan-sheng, HUANG Shi-bing, KANG Yong-shui, et al. Fatigue Damage Model and Evaluation Index for Rock Mass under freezing-thawing Cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1116-1127. (in Chinese))
[22]
贾蓬, 毛松泽, 孙占阳, 等. 冻融损伤砂岩的能量演化及分段本构模型[J]. 中南大学学报(自然科学版), 2023, 54(3): 908-919.
(JIA Peng, MAO Song-ze, SUN Zhan-yang, et al. Energy Evolution and Piecewise Constitutive Model of Freeze-thaw Damaged Sandstone[J]. Journal of Central South University (Science and Technology), 2023, 54(3): 908-919. (in Chinese))
[23]
张慧梅, 孟祥振, 彭川, 等. 冻融-荷载作用下基于残余强度特征的岩石损伤模型[J]. 煤炭学报, 2019, 44(11): 3404-3411.
(ZHANG Hui-mei, MENG Xiang-zhen, PENG Chuan, et al. Rock Damage Constitutive Model Based on Residual Intensity Characteristics under Freeze-thaw and Load[J]. Journal of China Coal Society, 2019, 44(11): 3404-3411. (in Chinese))
[24]
GAO F, XIONG X, XU C, et al. Mechanical Property Deterioration Characteristics and a New Constitutive Model for Rocks Subjected to Freeze-thaw Weathering Process[J]. International Journal of Rock Mechanics and Mining Sciences, 2021,140:104642.
PDF(3051 KB)

Accesses

Citation

Detail

Sections
Recommended

/