PDF(1374 KB)
Optimization of Emersed Plane Steel Gate Based on Active Target Particle Swarm Optimization Algorithm
HAN Yi-feng, HU Jian-ke, WANG Jing-kun
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 201-207.
PDF(1374 KB)
PDF(1374 KB)
Optimization of Emersed Plane Steel Gate Based on Active Target Particle Swarm Optimization Algorithm
Addressing the challenge of obtaining global optimal solutions for steel gate optimization problems, this study introduces an active target particle swarm optimization (APSO) algorithm for the optimization design of emersed plane steel gates. APSO incorporates an active target individual into the conventional particle swarm optimization (PSO) population and integrates it into the algorithm’s iterative update mechanism. This enhancement bolsters the algorithm’s capability to escape local optima and enhances its global optimization performance. Furthermore, the APSO algorithm employs a comprehensive learning factor in place of multiple individual learning factors used in traditional PSO, thereby improving the convergence rate and stability. Under constraints imposed by steel structure strength requirements, the APSO algorithm optimizes key structural parameters, including those of the main beam, side columns, panel, and secondary beams, with the objective of minimizing the total weight of the gate. After optimization, finite element analysis (FEA) is conducted using ABAQUS to verify the strength integrity of the main beam based on the optimized design parameters. Findings indicate that the APSO algorithm effectively optimizes the design of emersed plane steel gates, yielding improved structural dimensions. Specifically, the optimized gate design achieves a 15.38% reduction in total weight compared to previous literature examples, while stringent strength checks confirm compliance with allowable stress limits.
emersed plane steel gate / allowable stress / active target particle swarm optimization algorithm / strength checking / optimization design
| [1] |
SL 74—2019, 水利水电工程钢闸门设计规范[S]. 北京: 中国水利水电出版社, 2019: 1-18.
(SL 74—2019, Design Specification for Steel Gates of Water and Hydropower Projects[S]. Beijing: China Water & Power Press, 2019: 1-18. (in Chinese))
|
| [2] |
田涛. 基于ABAQUS的水闸加固设计钢结构的应用仿真研究[J]. 水利技术监督, 2022, 30(5): 192-196.
(
|
| [3] |
安徽省水利局勘测设计院. 水工钢闸门设计[M]. 北京: 水利出版社, 1980.
(Survey and Design Institute of Anhui Provincial Water Conservancy Bureau. Design of Hydraulic Steel Gate[M]. Beijing: China Water & Power Press, 1980. (in Chinese))
|
| [4] |
仇强, 秦斌, 侯作启, 等. 遗传算法在平板钢闸门优化设计中的应用[J]. 人民黄河, 2010, 32(1): 128-129.
(
|
| [5] |
蔡元奇, 彭波, 朱以文, 等. 基于ANSYS的遗传算法在水工弧形钢闸门优化设计中的应用[J]. 武汉大学学报(工学版), 2005, 38(5): 50-53.
(
|
| [6] |
王军, 钟亚丽, 于尧. 基于遗传算法的水工钢闸门优化设计[J]. 人民黄河, 2020, 42(11): 93-96.
(
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
李丝, 杨德锋, 袁周祥. 基于MATLAB粒子群算法弧形钢闸门的优化设计[J]. 水利科技与经济, 2017, 23(10): 1-5.
(
|
| [12] |
郑圣义, 陈笙, 姚辉, 等. 基于APSO算法的水工弧形闸门主框架优化设计[J]. 水力发电, 2017, 43(12):53-56.
(
|
| [13] |
钟亚丽, 王军. 平原地区低水头水工钢闸门面板的最优结构布置[J]. 水利规划与设计, 2020(4): 153-157.
(
|
| [14] |
张乃良, 孙宗池. 最优化方法[M]. 济南: 山东大学出版社, 1995: 212-231.
(
|
/
| 〈 |
|
〉 |