To explore an effective way of utilizing fine dredged sand as a replacement of ordinary concrete, cement-based material was prepared by using fine dredged sand with fineness modulus of 0.1-0.3 from the downstream of the Changjiang River as the main raw material. Dredged sand with varied mud content (6.5%-25.8%) was made into cement-based materials by adopting vibration and semi-dry pressing methods, respectively. In the vibration case, the increment of mud content has an adverse impact on the durability and mechanical properties of the tested material. The 28-day compressive strength and splitting tensile strength of cement-based materials with low mud content (6.5%) reached 35.1 MPa and 3.98 MPa, respectively, and the abrasion resistance strength and mass loss rate amounted to 12.5 h/(kg/m2) and 8.4%, respectively. In the semi-dry pressing case, however, the rising of mud content is conducive to the material strength. The 28-day compressive strength and splitting tensile strength of prepared materials with high mud content (25.8%) reached 37.0 MPa and 4.4 MPa, respectively, up by 36.5% and 25.7% respectively compared with those prepared by vibration method. Moreover, preparing cement-based material with vibration or semi-dry pressing molding techniques using dredged sand is environmental-friendly and of notable ecological effect by cutting the costs by 33.0%-40.5% compared with that using ordinary C30 concrete.
Key words
dredged sand from Changjiang River /
cement-based materials /
mud content /
engineering properties /
molding techniques
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 朱 伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002(4): 39-41.
[2] 赵德招, 杨奕健. 长江上海段疏浚土有益利用的框架性建议[J]. 水利水运工程学报, 2015(1): 82-88.
[3] 薛世浩, 汪竹茂. 利用淤泥制砖的半工业性试验[J]. 砖瓦, 1999(3): 26-27.
[4] HAMER K, KARIUS V. Brick Production with Dredged Hardbour Sediments. An Industrial-scale Experiment[J]. Waste Management, 2002, 22(5): 521-530.
[5] 诸裕良, 臧英平, 江朝华, 等. 基于长江下游疏浚砂的砂浆力学性能试验研究[J]. 水运工程, 2020(9): 56-60.
[6] 罗文东, 臧英平, 汤徐伟, 等. 航道整治废弃超细砂高强砂浆力学性能试验研究[J]. 中国水运, 2019, 19(10): 144-146.
[7] 江朝华, 李智成, 方佳敏, 等. 废弃疏浚沙土固化利用研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(12): 111-116.
[8] 宋云涛,董光辉,徐雪鸿,等.基于废弃超细砂的细粒混凝土性能试验研究[J]. 长江科学院院报,2021,37(11):157-161.
[9] 陈金武.特细砂混凝土在大沙河综合治理中应用分析[J]. 水利科技与经济, 2020, 26(6): 76-79.
[10] 吐尔洪·吐尔地,王怀义. 水工混凝土抗冲磨试验方法(水下钢球法)改进研究[J]. 中国农村水利水电, 2014(4): 126-128.
[11] 李亚静, 谢丽霞, 曹忠露, 等. 相同流动度下含泥量对水泥胶砂强度的影响[J]. 中国港湾建设, 2016, 36(6): 37-40.
[12] 李晓东, 李晓燕, 胡红伟, 等. 抗泥型聚羧酸高性能减水剂的合成及其对混凝土中砂含泥量适应性研究[J]. 新型建筑材料, 2017, 44(8): 29-33.
[13] 王晨晨, 张明明.泥土副作用对砂浆性能及含泥量限值的影响研究[J]. 赤峰学院学报(自然科学版), 2015, 31(12): 55-57.
[14] 胡晓曼, 董献国.含泥量对机制砂砂浆性能的影响[J]. 科技创新与应用, 2014(32): 44.
[15] 李俊文.砂子含泥量对砌筑粘结砂浆性能影响的研究[J]. 江西建材, 2015(8): 8,10.
[16] NORVELL J K, STEWART J G, JUENGER M C, et al. Influence of Clays and Clay-sized Particles on Concrete Performance[J]. Journal of Materials in Civil Engineering, 2007, 19(12), doi: 10.1061/(ASCE)0899-1561(2007)19:12(1053).
[17] 于 涛,张 亮,周钰沦,等.聚羧酸外加剂与砂含泥量的适应性研究[J]. 混凝土, 2012(3): 98-100.