Prediction of Curtain Grouting Construction Quality Based on Rough Set Theory, Salp Swarm Algorithm, and Random Forests

SONG Ming-ming, LIU Zong-xian

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 125-130.

PDF(6150 KB)
PDF(6150 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 125-130. DOI: 10.11988/ckyyb.20230062
Rock-Soil Engineering

Prediction of Curtain Grouting Construction Quality Based on Rough Set Theory, Salp Swarm Algorithm, and Random Forests

  • SONG Ming-ming1, LIU Zong-xian2,3
Author information +
History +

Abstract

To develop a grouting construction quality prediction model that is both highly accurate and efficient, we established a curtain grouting construction quality model based on an integration of the Rough Set Theory, Salp Swarm Algorithm, and Random Forests. The model is specifically designed for practical application in engineering projects. Comparisons were made with the SVM and BP neural network models, revealing that the proposed model achieved superior performance. Specifically, the proposed model required a mere 219.313 s for computation, and exhibited a Pearson correlation coefficient of 0.936 between predicted and measured values. Furthermore, the average absolute error, mean square error, and average absolute percentage error were measured at 0.140, 0.037, and 0.059, respectively. These findings highlight the potential of the proposed model to serve as a valuable reference for grouting construction quality control.

Key words

curtain grouting / rough set theory / salp swarm algorithm / random forest / construction quality / regression prediction

Cite this article

Download Citations
SONG Ming-ming, LIU Zong-xian. Prediction of Curtain Grouting Construction Quality Based on Rough Set Theory, Salp Swarm Algorithm, and Random Forests[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(11): 125-130 https://doi.org/10.11988/ckyyb.20230062

References

[1] 施 炎, 黄灿新, 王团乐, 等. 基于GIM的水利水电灌浆工程三维可视化分析方法与应用[J]. 长江科学院院报, 2022, 39(8): 133-139.
[2] 陈华俊. 岩溶库区帷幕灌浆技术及其工艺参数优化[J]. 长江科学院院报, 2022,39(7): 144-148, 153.
[3] 夏峻峰, 岳雪波, 张绍奎, 等. 大坝帷幕灌浆第三方质量检查及效果评价[J]. 人民长江, 2013, 44(6): 89-92.
[4] 雷英成, 张伯韬, 王 刚. 猴子岩水电站帷幕灌浆质量物探检测技术[J]. 水力发电, 2018, 44(11): 88-92, 116.
[5] 张 科, 刘享华, 杨红宣, 等. 含孔洞裂隙岩体灌浆后力学特性的物理试验与数值模拟[J]. 水文地质工程地质, 2019, 46(1): 79-85, 110.
[6] YANG C-P. Estimating Cement Take and Grout Efficiency on Foundation Improvement for Li-Yu-Tan Dam[J]. Engineering Geology, 2004, 75(1): 1-14.
[7] ZADHESH J, RASTEGAR F, SHARIFI F, et al. Consolidation Grouting Quality Assessment Using Artificial Neural Network (ANN)[J]. Indian Geotechnical Journal, 2015, 45(2): 136-144.
[8] LI X, ZHONG D, REN B, et al. Prediction of Curtain Grouting Efficiency Based on ANFIS[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(1): 281-309.
[9] 刘宗显, 余 佳, 吴斌平, 等. 基于LWOA和MKSVM算法的帷幕灌浆施工质量模糊综合动态评价研究[J]. 水利水电技术, 2020, 51(6): 72-83.
[10] 张德永, 王玉洲, 张志豪, 等. 基于正交设计和粗糙集理论的地基极限承载力影响因素分析[J]. 长江科学院院报, 2015,32(9): 118-122.
[11] 白 云, 陈国强. 基于尺度特征融合的随机森林日供水量预测模型[J]. 长江科学院院报, 2022, 39(3): 33-37.
[12] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp Swarm Algorithm: A Bio-inspired Optimizer for Engineering Design Problems[J]. Advances in Engineering Software, 2017, 114: 163-191.
[13] PAWLAK Z.Rough Sets[J].International Journal of Computer & Information Sciences,1982,11(5):341-356.
[14] BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
[15] 温博文, 董文瀚, 解武杰, 等. 基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用, 2018, 54(10): 154-157.
[16] LIU Z, SONG W, CUI B, et al. A Comprehensive Evaluation Model for Curtain Grouting Efficiency Assessment Based on Prospect Theory and Interval-Valued Intuitionistic Fuzzy Sets Extended by Improved D Numbers[J]. Energies, 2019, 12(19): 3674.
PDF(6150 KB)

Accesses

Citation

Detail

Sections
Recommended

/