The compaction quality of cemented sand, gravel and rock (CSGR) is controlled by the VC value and the rolling parameters. The mix ratio parameters of raw materials have a direct impact on the VC value. Through orthogonal test (including four factors and three levels) in consideration of interactions, the test results of VC values were processed via statistical methods such as range analysis, variance analysis, multiple linear regression analysis and residual analysis. The sensitivity of VC value of CSGR to four factors, i.e., unit water consumption (W), unit cement consumption (C), unit fly ash consumption (F) and sand ratio (S) was examined. Results demonstrate that the contribution rates of W, C, F, S and test error to VC value were 75.55%, 6.73%, 17.00%, 0.08% and 0.64% respectively. The influence of sand ratio on VC value is almost negligible. Besides, W should be strictly controlled and the VC value should be monitored in real time, so as to adjust construction measures and control construction quality. In line with the research results, a prediction model of VC value is proposed, which is of guiding significance for rationally adjusting the mix ratio parameters to control VC value and improving construction quality.
Key words
cemented sand, gravel and rock dam /
VC value /
working performance /
construction quality /
sensitivity analysis /
prediction model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] RAPHAEL J M. The Optimum Gravity Dam[C]//American Society of Civil Engineers. Proceedings of Roller Compacted Concrete III. Reston, VA,1992: 221-244.
[2] LONDE P, LINO M. Faced Symmetrical Hardfill Dam: A New Concept of RCC[J]. International Water Power & Dam Construction, 1992, 44(2): 19-24.
[3] JIA J, LINO M, JIN F, et al. The Cemented Material Dam: A New, Environmentally Friendly Type of Dam[J]. Engineering, 2016, 2(4): 490-497.
[4] 贾金生,刘 宁,郑璀莹,等. 胶结颗粒料坝研究进展与工程应用[J]. 水利学报, 2016, 47(3): 315-323.
[5] 王 莎. 胶凝砂砾石坝全过程质量控制及可靠度分析[D]. 中国水利水电科学研究院, 2019.
[6] 钟登华,刘东海,崔 博. 高心墙堆石坝碾压质量实时监控技术及应用[J]. 中国科学:技术科学,2011, 41(8): 1027-1034.
[7] 马洪琪. 糯扎渡高心墙堆石坝坝料特性研究及填筑质量检测方法和实时监控关键技术[J]. 中国工程科学, 2011, 13(12): 9-14.
[8] 马洪琪,钟登华,张宗亮,等. 重大水利水电工程施工实时控制关键技术及其工程应用[J]. 中国工程科学, 2011, 13(12): 20-27.
[9] 贾金生,赵 春,缪 纶,等. 胶凝砂砾石坝施工质量监控系统开发及应用[J]. 中国水利水电科学研究院学报, 2018, 16(1): 1-8.
[10] 孙明权,孙政卫,杨世锋,等. 用水量对胶凝砂砾石抗压强度的影响[J]. 华北水利水电大学学报(自然科学版), 2017, 38(1): 64-67.
[11] 金光日,方 涛,王俊锋,等. PVA纤维掺和胶凝砂砾石材料的力学性能研究[J]. 长江科学院院报,2018, 35(9): 148-153.
[12] 刘玉玺,钟登华,崔 博. 基于实时监控的碾压混凝土VC值变化量预测模型研究[J]. 水力发电学报,2014, 33(1): 154-160.
[13] 钟桂良,崔 博,刘 磊,等. 碾压混凝土坝施工气候信息实时监控理论与应用[J]. 水利水电技术,2012, 43(1): 84-87.
[14] LIU D, LI Z, LIU J. Experimental Study on Real-time Control of Roller Compacted Concrete Dam Compaction Quality Using Unit Compaction Energy Indices[J]. Construction and Building Materials. 2015, 96: 567-575.
[15] 刘东海,孙龙飞,夏谢天. 不同VC值下基于压实功的RCC碾压参数控制标准确定方法[J]. 水利学报,2019, 50(9): 1063-1071.
[16] SL 678—2014,胶结颗粒料筑坝技术导则[S].北京:中国水利水电出版社,2014.
[17] GBJ 80—85,普通混凝土拌合物性能试验方法[S].北京:中国标准出版社,1985.
[18] 朱伟兵,孙红雨. 低VC值碾压混凝土性能研究[J]. 长江大学学报(自然科学版), 2016, 13(01): 44-47.
[19] 孙孝通. 碾压混凝土配合比设计[J]. 工程技术研究, 2017(8): 119-120.
[20] 李志辉,李 欣. MINITAB统计分析方法及应用[M].2版. 北京:电子工业出版社,2017.