Horizontal Displacement of Adjacent Pipeline Induced by Excavation in Consideration of Spatial Effect

LI Yong-huan, LIU Zhi-he, RAO Qin-bo, GUO Jin, HU Hai-bo, LIU Qiu-yuan, YANG Ying

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (5) : 125-130.

PDF(4440 KB)
PDF(4440 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (5) : 125-130. DOI: 10.11988/ckyyb.20220423
Rock-Soil Engineering

Horizontal Displacement of Adjacent Pipeline Induced by Excavation in Consideration of Spatial Effect

  • LI Yong-huan1, LIU Zhi-he2,3, RAO Qin-bo4, GUO Jin5,6, HU Hai-bo5,6, LIU Qiu-yuan7, YANG Ying8
Author information +
History +

Abstract

Excavation of foundation pits can cause adverse effects on adjacent pipelines due to the displacement of the surrounding soil. An analytical method for predicting the additional horizontal deformation of adjacent pipelines caused by excavation is proposed using a three-dimensional image source method. Nearby pipelines are treated as Euler-Bernoulli beams on a Pasternak foundation in consideration of the spatial effect of excavation and the spatial distribution of pipelines. The validity of the proposed method is demonstrated through existing cases. Results indicate that the total horizontal deformation of pipelines is primarily induced by the deformation of retaining walls that are adjacent and parallel to the pipelines. The deformation of retaining walls on both sides also significantly impacts the horizontal deformation of pipelines outside the excavation area. The adverse effects of excavation on pipeline's horizontal deformation can be predicted through defining a safety factor and considering different spatial distributions of pipeline. The influence zone of excavation on pipeline deformation can be obtained through plotting contours of the safety factor. When the distance between the pipeline and the retaining wall is within 0.75H (where H is the depth of foundation pit excavation), the safety factor first decreases and then increases with the increase of pipeline's burial depth. The safety factor reaches its minimum when the pipeline is buried at a depth of approximately 1.0H. When the distance between the pipeline and the retaining wall exceeds 0.75H, the safety factor increases with the increase of pipeline's burial depth.

Key words

excavation / spatial effect / adjacent pipeline / virtual image method / contours of safety factor

Cite this article

Download Citations
LI Yong-huan, LIU Zhi-he, RAO Qin-bo, GUO Jin, HU Hai-bo, LIU Qiu-yuan, YANG Ying. Horizontal Displacement of Adjacent Pipeline Induced by Excavation in Consideration of Spatial Effect[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(5): 125-130 https://doi.org/10.11988/ckyyb.20220423

References

[1]ZHANG Dong-mei, XIE Xiao-chuang, LI Zi-li, et al. Simplified Analysis Method for Predicting the Influence of Deep Excavation on Existing Tunnels[J]. Computers and Geotechnics, 2020, 121: 103477.
[2] 郑 刚. 软土地区基坑工程变形控制方法及工程应用[J].岩土工程学报,2022,44(1):1-36, 201.
[3] 郜新军, 段鹏辉, 王 磊. 基坑开挖对邻近管线变形影响及控制措施研究[J]. 郑州大学学报(工学版), 2020, 41(5): 66-71.
[4] YING H, CHENG K, LIU S, et al. An Efficient Method for Evaluating the Ground Surface Settlement of Hangzhou Metro Deep Basement Considering the Excavation Process[J]. Acta Geotechnica, 2022, 17(12): 5759-5771.
[5] ROBOSKI J, FINNO R J. Distributions of Ground Movements Parallel to Deep Excavations in Clay[J]. Canadian Geotechnical Journal, 2006, 43(1): 43-58.
[6] LIU Hong-yan, LI Hou-en, HUANG Yu-shi, et al. Analysis of Vertical Displacement of Underground Pipeline nearby Caused by Foundation Pit Excavation Based on Field Test[C]//International Conference on Pipelines and Trenchless Technology 2011. October 26-29, 2011, Beijing, China. Reston, VA, USA: American Society of Civil Engineers, 2011: 1388-1393.
[7] 张陈蓉, 俞 剑, 黄茂松. 基坑开挖对邻近地下管线影响的变形控制标准[J]. 岩土力学, 2012, 33(7): 2027-2034.
[8] 张陈蓉, 蔡建鹏, 黄茂松. 基坑开挖对邻近地埋管线的影响分析[J]. 岩土工程学报, 2010, 32(增刊2): 154-157.
[9] 梁发云, 李彦初, 黄茂松. 基于Pasternak双参数地基模型水平桩简化分析方法[J]. 岩土工程学报, 2013, 35(增刊1): 300-304.
[10] 崔春义, 辛 宇, 许成顺, 等. Pasternak层状地基中群桩水平动力响应解析解答[J/OL]. 岩土工程学报, 2022: 1-10.(2022-07-05).https://kns.cnki.net/kcms/detail/32.1124.TU.20220702.1233.002.html.
[11] 张志伟, 梁荣柱, 高 坤, 等. 考虑管片环间接头弱化的新建隧道上穿引起既有盾构隧道纵向变形分析[J]. 岩石力学与工程学报,2022,41(增刊1):2955-2970.
[12] 俞建霖, 龚晓南. 深基坑工程的空间性状分析[J]. 岩土工程学报, 1999, 21(1): 21-25.
[13] 木林隆, 黄茂松. 基坑开挖引起的周边土体三维位移场的简化分析[J]. 岩土工程学报, 2013, 35(5): 820-827.
[14] SAGASETA C. Analysis of Undraind Soil Deformation Due to Ground Loss[J]. Géotechnique, 1987, 37(3): 301-320.
[15] XU K J, POULOS H G. General Elastic Analysis of Piles and Pile Groups[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(15): 1109-1138.
[16] KACHANOV M, SHAFIRO B, TSUKROV I. Handbook of Elasticity Solutions[M]. Dordrecht: Springer Netherlands, 2003.
[17] 魏 纲, 赵城丽. 基坑开挖引起临近地铁隧道的附加荷载计算方法[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3408-3417.
[18] 应宏伟, 程 康, 俞建霖, 等. 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报(工学版), 2021, 55(2): 318-329.
[19] ATTEWELL P B, YEATES J, SELBY A R. Soil Movements Induced by Tunnelling and Their Effects on Pipelines and Structures[M]. Glawsgow: Blackie, 1986.
[20] TANAHASHI H. Formulas for an Infinitely Long Bernoulli-Euler Beam on the Pasternak Model[J]. Journal of the Japanese Geotechnical Society, 2004, 44(5): 109-118.
[21] YAO W J, YIN W X. Numerical Simulation and Study for Super-long Pile Group under Axis and Lateral Loads[J]. International Journal of Advanced Structural Engineering, 2010, 13(6): 1139-1151.
[22] 王成华, 段贤伟. 基坑开挖对地下管线工作性状影响的数值分析[J]. 地下空间与工程学报, 2013, 9(5): 1166-1172.
[23] SHI L, YU W, FU L. Deformation Analysis of Deep Foundation Pit in Soft Soil Area Considering Space-Time Effect[J]. The Journal of Engineering, 2019, 2019(11): 8274-8281.
[24] 奚家米, 付 垒. 基于时空效应的深基坑工程变形规律分析[J]. 科学技术与工程, 2019, 19(16): 290-297.
[25] 商厚胜, 丛筱南. 浅埋深小直径顶管工程施工常见问题分析[J]. 岩石力学与工程学报, 2004, 23(增刊2): 5165-5169.
PDF(4440 KB)

Accesses

Citation

Detail

Sections
Recommended

/