Centrifugal Test on Stress Characteristics of Existing Bolts in High Slope of Highway Reconstruction and Expansion

FENG Zhong-ju, WANG Wei, JIANG Guan, WANG Fu-chun, ZHAO Rui-xin

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (7) : 110-117.

PDF(7546 KB)
PDF(7546 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (7) : 110-117. DOI: 10.11988/ckyyb.20230224
Rock-Soil Engineering

Centrifugal Test on Stress Characteristics of Existing Bolts in High Slope of Highway Reconstruction and Expansion

  • FENG Zhong-ju1, WANG Wei1, JIANG Guan2, WANG Fu-chun1, ZHAO Rui-xin1
Author information +
History +

Abstract

To investigate the stress characteristics of existing bolts and slope stability during secondary excavation in a slope reconstruction and expansion project, we conducted centrifugal test by using self-developed bolt angle support device for model test.The horizontal displacement at the slope’s crest, bolt axial force, and soil pressure throughout the excavation process on a bedding rock slope were examined. The anchoring angles studied were 10°, 20°, 30°, 45°, and 60°, with one bolt per 18 cm and per 12 cm, respectively. Results indicate that under the same anchoring angle, cumulative horizontal displacement at the crest increases nonlinearly with slope unloading, notably exceeding that at the mid-slope. The axial force of bolt exhibits a unimodal distribution, peaking during excavations at slope crest and toe. Peak axial force, near the weak surface, initially declines and then rises with excavation unloading, remaining over 61% of pre-excavation levels. As anchoring angle increases, slope crest displacement initially decreases then rises, while soil pressure follows an inverse trend, suggesting an optimal anchoring angle. We recommend staged slope excavation, with reduced excavation rates at the crest and toe. Slope gradient, rock strata, and weak surface inclination should be considered in anchoring angle design for optimal performance.The research findings are conducive to selecting appropriate support measures in secondary excavation of slopes.

Key words

high slope / existing bolt / secondary excavation / centrifugal test / bolt angle / bolt density

Cite this article

Download Citations
FENG Zhong-ju, WANG Wei, JIANG Guan, WANG Fu-chun, ZHAO Rui-xin. Centrifugal Test on Stress Characteristics of Existing Bolts in High Slope of Highway Reconstruction and Expansion[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(7): 110-117 https://doi.org/10.11988/ckyyb.20230224

References

[1] 冯忠居,江 冠,赵瑞欣,等.基于多因素耦合效应的锚索预应力长期损失研究[J].岩土力学,2021,42(8):2215-2224.(FENG Zhong-ju, JIANG Guan, ZHAO Rui-xin, et al. Study on Pre-stress Long Term Loss of Anchor Cable Considering Coupled Multiple Factors[J]. Rock and Soil Mechanics, 2021, 42(8): 2215-2224.(in Chinese))
[2] 冯忠居, 朱彦名, 高雪池, 等. 基于熵权-灰关联法的岩质开挖边坡安全评价模型[J]. 交通运输工程学报, 2020, 20(2): 55-65. (FENG Zhong-ju, ZHU Yan-ming, GAO Xue-chi, et al. Safety Evaluation Model of Excavating Rock Slope Based on Entropy-grey Correlation Method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 55-65.(in Chinese))
[3] GUAN J, FENG Z, ZHAO R, et al. Unload Pull-out Test of Full-length Grouted Bolts in Slope Reconstruction and Expansion[J]. Journal of Engineering and Technological Sciences, 2021, 53(2): 1-14.
[4] JIANG G, FENG Z, ZHAO R, et al. Case Study on Safety Assessment of Rockfall and Splash Stone Protective Structures for Secondary Excavation of Highway Slope[J]. Advances in Civil Engineering, 2021, doi:10.1155/2021/1863845.
[5] 冯忠居, 江 冠, 王富春, 等. 凝灰岩高边坡二次开挖稳定性分析及防护技术优化[J]. 长江科学院院报, 2021, 38(2): 59-66. (FENG Zhong-ju, JIANG Guan, WANG Fu-chun, et al. Stability Analysis of Secondary Excavation on Tuff High Slope and Optimization of Protection Technology[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(2): 59-66.(in Chinese))
[6] 江 冠,冯忠居,赵瑞欣,等.高边坡预应力锚索特征荷载现场试验研究[J].长江科学院院报,2022,39(1):100-106.(JIANG Guan, FENG Zhong-ju, ZHAO Rui-xin, et al. Characteristic Load of Prestressed Anchor Cable of High Slope Based on Pull-out Test on Site[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 100-106.(in Chinese))
[7] 张 旭,周绍武,李元松,等.公路泥质砂岩边坡预警判据与参数敏感性分析[J].长江科学院院报,2019,36(3):90-97.(ZHANG Xu, ZHOU Shao-wu, LI Yuan-song, et al. Early Warning Criterion and Parameter Sensitivity Analysis of Argillaceous Sandstone Slope[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(3): 90-97.(in Chinese))
[8] 蒋明镜, 江华利, 廖优斌, 等. 顺层岩质边坡锚杆加固机理离散元分析[J]. 湖南大学学报(自然科学版), 2018, 45(增刊1): 144-149. (JIANG Ming-jing, JIANG Hua-li, LIAO You-bin, et al. Discrete Element Analysis of Bolt Reinforcement Mechanism of Bedding Rock Slope[J]. Journal of Hunan University (Natural Sciences), 2018, 45(Supp.1): 144-149.(in Chinese))
[9] 魏启炳,刘志彬,鲁洪强,等.青岛崂山路拓宽工程边坡加固稳定性研究[J].煤田地质与勘探,2017,45(2):101-104,111.(WEI Qi-bing, LIU Zhi-bin, LU Hong-qiang, et al. Stability Analysis of Slope Reinforcement of the Broadening Project of Laoshan Road in Qingdao[J]. Coal Geology & Exploration, 2017, 45(2): 101-104, 111.(in Chinese))
[10]彭文祥,赵明华,袁海平,等.基于拉格朗日差分法的全长注浆锚杆支护参数优化[J].中南大学学报(自然科学版),2006,37(5):1002-1007.(PENG Wen-xiang, ZHAO Ming-hua, YUAN Hai-ping, et al. Parameters Analysis of Grouted Bolts by Lagrangian Difference Method[J]. Journal of Central South University (Science and Technology), 2006, 37(5): 1002-1007.(in Chinese))
[11]刘 建, 乔丽苹, 李蒲健, 等. 拉西瓦水电工程高应力坝基边坡开挖扰动及锚固效应研究[J]. 岩石力学与工程学报, 2008, 27(6): 1094-1103. (LIU Jian, QIAO Li-ping, LI Pu-jian, et al. Study of Excavation Disturbance and Anchoring Effects of high-geostress Dam Foundation Slope of Laxiwa Hydropower Engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1094-1103.(in Chinese))
[12]王大伟, 沈 鹏. 高速公路改扩建工程路堑高边坡支护机理与效果[J]. 长安大学学报(自然科学版), 2017, 37(3): 39-46. (WANG Da-wei, SHEN Peng. Support Mechanism and Effect of Cutting High Slope in Expressway Reconstruction and Expansion Projects[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(3): 39-46.(in Chinese))
[13]周子涵,陈忠辉,张凌凡,等.基于能量原理的露天矿边坡开挖稳定性突变研究[J].岩土力学,2019,40(12):4881-4889.(ZHOU Zi-han, CHEN Zhong-hui, ZHANG Ling-fan, et al. Energy Principle Based Catastrophe Study of Slope Stability in Open-pit Excavation[J]. Rock and Soil Mechanics, 2019, 40(12): 4881-4889.(in Chinese))
[14]周子涵,陈忠辉,包 敏,等.顺倾断续节理岩质边坡的稳定性突变[J].煤炭学报,2020,45(增刊1):161-172.(ZHOU Zi-han, CHEN Zhong-hui, BAO Min, et al. Stability Mutation of Dip Discontinuous Jointed Rock Slope[J]. Journal of China Coal Society, 2020, 45(Supp.1): 161-172.(in Chinese))
[15]柏俊磊, 王乐华, 汤开宇, 等. 开挖卸荷速率变化对岩质边坡应力应变影响作用研究[J]. 长江科学院院报, 2014, 31(6): 60-64, 68. (BAI Jun-lei, WANG Le-hua, TANG Kai-yu, et al. Influence of Excavation Unloading Rate on the Stress and Strain of Rock Slope[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(6): 60-64, 68.(in Chinese))
[16]单仁亮, 杨 昊, 王述红, 等. 节理化岩质边坡开挖稳定性分析及支护方案设计[J]. 地下空间与工程学报, 2015, 11(4): 1016-1022. (SHAN Ren-liang, YANG Hao, WANG Shu-hong, et al. Stability Analysis on Jointed Rock Slope Excavation and Design of Strengthening Scheme[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(4): 1016-1022.(in Chinese))
[17]GHADRDAN M, SHAGHAGHI T, TOLOOIYAN A. Effect of Negative Excess Pore-water Pressure on the Stability of Excavated Slopes[J]. Géotechnique Letters, 2020, 10(1): 20-29.
[18]TANGCHAWAL S. Risk Models of Slope Excavations[J]. International Journal of Mining, Reclamation and Environment, 2011, 25(3): 274-283.
[19]FERRARI A, LEDESMA A, GONZLEZ D A, et al. Effects of the Foot Evolution on the Behaviour of Slow-moving Landslides[J]. Engineering Geology, 2011, 117(3/4): 217-228.
[20]胡英国,卢文波,陈 明,等.SPH-FEM耦合爆破损伤分析方法的实现与验证[J].岩石力学与工程学报,2015,34(增刊1):2740-2748.(HU Ying-guo, LU Wen-bo, CHEN Ming, et al. Realization and Verification of SPH-FEM Coupling Blasting Damage Analysis Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Supp.1): 2740-2748.(in Chinese))
[21]晏长根,孙巍锋,袁 通,等.均质边坡离心试验锚杆的应力响应及布设探究[J].煤田地质与勘探,2017,45(6):96-101,110.(YAN Chang-gen,SUN Wei-feng,YUAN Tong,et al.Exploration of Stress Responses and Arrangement of Fully Grouted Bolts Based on Centrifugal Model Test of Homogeneous Rock Slope[J]. Coal Geology & Exploration,2017,45(6):96-101,110.(in Chinese))
[22]郑 达, 唐劲松. 基于离心试验的边坡倾倒变形下弯折带演化特征[J]. 西南交通大学学报, 2021, 56(6): 1232-1240. (ZHENG Da, TANG Jin-song. Slope Toppling Deformation and Development Characteristics of Bending Belts by Centrifugal Model Test[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1232-1240.(in Chinese))
[23]郑 达,王沁沅,毛 峰,等.反倾层状岩质边坡深层倾倒变形关键致灾因子及成灾模式的离心试验研究[J].岩石力学与工程学报,2019,38(10):1954-1963.(ZHENG Da, WANG Qin-yuan, MAO Feng, et al. Centrifuge Model Test Study on Key Hazard-inducing Factors of Deep Toppling Deformation and Disaster Patterns of Counter-tilt Layered Rock Slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1954-1963.(in Chinese))
[24]李 明, 张 嘎, 李焯芬, 等. 开挖对边坡变形影响的离心模型试验研究[J]. 岩土工程学报, 2011, 33(4): 667-672. (LI Ming, ZHANG Ga, LI Zhuo-fen, et al. Centrifugal Model Tests on Excavation-induced Deformation of Slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 667-672.(in Chinese))
[25]陈昌禄,邵生俊,佘芳涛.土结构性变化对开挖边坡稳定性的影响分析[J].岩土工程学报,2011,33(12):1938-1942.(CHEN Chang-lu, SHAO Sheng-jun, SHE Fang-tao. Impact of Structural Change of Soils on Stability in Slope Excavation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1938-1942.(in Chinese))
[26]李 忠, 陈思阳, 朱彦鹏, 等. 基于开挖过程稳定性的框架预应力锚杆边坡加固计算方法研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2964-2970. (LI Zhong, CHEN Si-yang, ZHU Yan-peng, et al. Study on Calculation Method of Slope Reinforcement with Frame Prestressed Anchor Based on Stability of Excavation Process[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Supp.1): 2964-2970.(in Chinese))
[27]卞 洁,裴广龙,张 飞,等.不排水条件下开挖边坡稳定性极限分析[J].长江科学院院报,2017,34(5):115-119.(BIAN Jie,PEI Guang-long,ZHANG Fei,et al.Limit Analysis of Excavation Slope Stability under Undrained Condition[J]. Journal of Yangtze River Scientific Research Institute,2017,34(5):115-119.(in Chinese))
[28]冯忠居,于 翔,成圆梦,等.一种用于模型试验的锚杆支护装置:中国,CN210737625U[P].2020-06-12.(FENG Zhong-ju, YU Xiang, CHENG Yuan-meng, et al. Anchor Rod Supporting Device for Model Test: China,CN210737625U[P]. 2020-06-12.(in Chinese))
[29]施金江. 某长大缓倾顺层边坡失稳机理与防治效果研究[D]. 成都: 西南交通大学, 2019. (SHI Jin-jiang. Study on the Instability Mechanism and Prevention Effect of a Long and Slowly Inclined Bedding Slope[D].Chengdu: Southwest Jiaotong University, 2019. (in Chinese))
[30]FAHEY M, FINNIE I, HENSLEY P J, et al. Geotechnical Centrifuge Modelling at the University of Western Austrialia[R].Perth: The University of Western Austrialia,1990.
[31]韩世浩,王慧华.离心模型技术在三峡工程高边坡研究中的应用[J].长江科学院院报,1991,8(增刊1):32-38,72.(HAN Shi-hao, WANG Hui-hua. Application of Centrifugal Model Technology in the Study of High Slope of Three Gorges Project[J]. Journal of Changjiang River Scientific Research Institute, 1991, 8(Supp.1): 32-38, 72.(in Chinese))
[32]李金和. 地震作用下土质边坡-锚固结构动力响应及相互作用研究[D]. 西安: 长安大学, 2015. (LI Jin-he. Study on Dynamic Response and Interaction of Soil Slope and Its Anchoring Structure Subjected to Earthquake[D].Xi’an: Changan University, 2015. (in Chinese))
[33]杨秀杰,邓凯伦,佘孟飞,等.分级加载下加筋边坡离心模型试验数值模拟[J].长江科学院院报,2022,39(2):115-121.(YANG Xiu-jie, DENG Kai-lun, SHE Meng-fei, et al. Numerical Simulation of Centrifugal Model Test of Reinforced Slope under Step Loading[J]. Journal of Yangtze River Scientific Research Institute,2022,39(2):115-121.(in Chinese))
PDF(7546 KB)

Accesses

Citation

Detail

Sections
Recommended

/