To investigate the flow characteristics in meandering channels under backwater conditions caused by overflow dams, a meandering channel model with an overflow dam at its outlet is designed and constructed. Velocity and water level data in thirteen cross sections are measured using an Acoustic Doppler Velocimeter (ADV) and a digital water level altimeter. The experimental results demonstrate that the absolute transverse water surface gradients in curved segments decrease as the relative dam height increases. The longitudinal water surface gradients between a bending apex and the inlet of the downstream adjacent crossover area exhibit positive values, while the longitudinal water surface gradients between the inlet of a crossover area and the downstream adjacent bending apex display negative values. Nevertheless, the magnitudes of these gradients diminish with the increasing relative dam height. Moreover, secondary flow vortex blobs are observed in the crossover areas of the meandering channel, rotating in the same direction as those in the upstream adjacent curved segment. With an increase in relative dam height, the depth-averaged longitudinal velocities along the meandering channel decrease to varying extents. Likewise, the maximum turbulent kinetic energy in any cross section decreases as the relative dam height increases. Regarding the distribution of turbulent kinetic energy, the longitudinal velocity fluctuation contributes the most, followed by the transverse velocity fluctuation, while the vertical velocity fluctuation contributes the least. The Reynolds stress (Ruv) can be used as an approximate indicator of the directions of cross-sectional transverse flow movements at the inlets and outlets of the crossover areas. If the Reynolds stress value is positive in a specific region, the fluid will flow from left to right; otherwise, the fluid will flow from right to left.
Key words
overflow dam /
backwater condition /
meandering channel /
flow motion /
turbulent characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 童思陈, 钟 亮, 许光祥. 弯道水流环流结构的试验研究[J]. 水运工程, 2009(10): 32-35.
[2] 许 栋, 白玉川, 谭 艳. 正弦派生曲线弯道中水沙运动特性动床试验[J]. 天津大学学报,2010,43(9):762-770.
[3] 胡旭跃, 张青松, 马利军. 过渡段对连续弯道水流影响的数值模拟[J]. 水科学进展, 2011, 22(6): 851-858.
[4] 刘曾美, 吴俊校, 黄国如. 河渠弯道缓流水面曲线计算探讨[J]. 水利水运工程学报, 2008(2): 54-59.
[5] 许光祥, 童思陈, 钟 亮. 弯道水面横比降沿程分布特性研究[J]. 水力发电学报, 2009, 28(4): 114-118.
[6] KIM J S, SEO I W, BAEK D, et al. Recirculating Flow-Induced Anomalous Transport in Meandering Open-Channel Flows[J]. Advances in Water Resources, 2020, 141: 103603.
[7] PAN Y, LIU X, YANG K. Effects of Discharge on the Velocity Distribution and Riverbed Evolution in a Meandering Channel[J]. Journal of Hydrology, 2022, 607: 127539.
[8] 孙东坡, 朱岐武, 张耀先, 等. 弯道环流流速与泥沙横向输移研究[J]. 水科学进展, 2006, 17(1): 61-66.
[9] QIN C, SHAO X, ZHOU G. Comparison of Two Different Secondary Flow Correction Models for Depth-Averaged Flow Simulation of Meandering Channels[J]. Procedia Engineering, 2016, 154: 412-419.
[10] VAN BALEN W, UIJTTEWAAL W S J, BLANCKAERT K. Large-Eddy Simulation of a Mildly Curved Open-Channel Flow[J]. Journal of Fluid Mechanics, 2009, 630: 413-442.
[11] 李志威, 方春明. 弯道水流的能量耗散规律及其应用[J]. 中国水利水电科学研究院学报, 2010, 8(3): 214-219.
[12] ENGEL F L, RHOADS B L. Velocity Profiles and the Structure of Turbulence at the Outer Bank of a Compound Meander Bend[J]. Geomorphology, 2017, 295: 191-201.
[13] 钟 亮, 潘云文, 蒋孜伟. 长江重庆主城区河段水沙变化特征分析[J]. 泥沙研究, 2015(6): 65-71.
[14] 张桂花, 刘少斌, 刘 欣. 大石涧水库溢流特性与坝下河道冲刷模型试验研究[J]. 水电能源科学, 2021, 39(2): 74-77.
[15] 秦 鹏, 励 泽, 吴钧辉, 等. 一种新型溢流坝面结构的消能效果数值模拟研究[J]. 水电能源科学, 2021, 39(6): 77-80.
[16] 孙雅珍. 简明理论力学[M]. 北京: 中国电力出版社, 2016.
[17] 钱 宁, 张 仁,周志德. 河床演变学[M]. 北京: 科学出版社, 1987.