In this study, we aimed to investigate the pore characteristics and safety of high-strength concrete reinforced with polyoxymethylene (POM) fibers under impact loads. We prepared high-strength concrete samples with a design strength grade of C60, incorporating POM fibers with a length of 6 mm. The volume fractions of POM fibers used were 0%, 0.15%, 0.3%, 0.45%, and 0.6%. We further analyzed the distribution patterns of the T2 relaxation time spectrum for specimens with different fiber contents by using nuclear magnetic resonance (NMR) technology. Additionally, we conducted quasi-static compression tests on the specimens with various fiber contents using a rock mechanics testing machine, and carried out dynamic uniaxial compression tests on the specimens at different strain rates (64.8 s-1, 87.0 s-1, 116.4 s-1, and 149.1 s-1) using a split Hopkinson pressure bar (SHPB) apparatus. Through these experiments, we analyzed the internal pore structure of POM fiber-reinforced high-strength concrete, as well as the changes in stress-strain curves, peak stress, toughness, and energy dissipation under different strain rates and fiber contents.The results reveal several key findings. The inclusion of POM fibers leads to a reduction in the peak value of the T2 relaxation time spectrum, accompanied by a leftward shift in the spectrum curve. This indicates a decrease in the number of internal pores, a reduction in pore diameter, and a lower porosity within the specimens. The results also unveil a significant strain rate effect in the specimens, with the addition of POM fibers enhancing the overall performance.The peak stress of the specimens exhibited an initial increase followed by a decrease as the fiber content increased. Notably, when the fiber content reached 0.45%, the dynamic compressive strength of the specimens reached its peak, while excessive fiber content resulted in a decrease in strength. Moreover, the inclusion of fibers improved the toughness of the specimens in resisting external loads. The dissipated energy of the specimens increased proportionally with the incident energy, displaying a positive linear relationship. The fracture energy density of the specimens initially increased and then decreased with the increase of fiber content, with the optimal effect observed at a content of 0.45%. Furthermore, increasing strain rate amplified the variation amplitude of the energy dissipation density in the specimens.
Key words
polyoxymethylene fiber /
high-strength concrete /
nuclear magnetic resonance /
stress-strain curve /
peak stress /
toughness /
crushing energy consumption density
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 李 敏,孟庆腾,陈凤山.C60混凝土的动态抗压性能试验及数值模拟[J].混凝土,2017(3):46-48.
[2] 马煜东,马恺泽,魏 慧,等.掺入不同尺寸钢纤维的高强混凝土深梁抗剪性能[J].华南理工大学学报(自然科学版),2021, 49(4):20-27,38.
[3] 周南南.高温对高强高性能混凝土抗压强度影响机理研究[J].新型建筑材料,2021,48(4):14-17,21.
[4] 周兴宇, 杨鼎宜, 李玉寿, 等. 多尺度聚丙烯纤维混凝土力学性能及损伤演化研究[J]. 混凝土与水泥制品, 2020(4): 49-53.
[5] 梁宁慧. 多尺度聚丙烯纤维混凝土力学性能试验和拉压损伤本构模型研究[D]. 重庆: 重庆大学.
[6] 刘数华, 何 林. 聚丙烯纤维混凝土抗裂性的试验研究[J]. 化学建材, 2005, 21(2):50-52.
[7] 张玉新.合成纤维混凝土楼板中长期非荷载抗裂性能[J].广西大学学报(自然科学版),2010,35(1):181-186.
[8] 薛维培,刘晓媛,姚直书,等.不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J].复合材料学报,2020,37(9):2285-2293.
[9] 田国峰,李建华,战佳宇,等.聚甲醛纤维对砂浆性能的影响研究[J].混凝土与水泥制品,2017(7):51-54.
[10]刘 露.聚甲醛纤维表面改性及其增强混凝土力学性能的研究[D]. 武汉:武汉纺织大学,2013.
[11]KWON Y K.Melting and Heat Capacity of Gel-spun, Ultra-high Molar-Mass Polyethylene Fibers[J]. Journal of Polymer Science, 2000, 41(16):6237-6249.
[12]张丽辉,刘建忠,周华新,等.聚甲醛纤维对混凝土性能的影响[J].混凝土与水泥制品,2018(1):58-62.
[13]张丽辉,周华新,刘建忠,等.聚甲醛纤维增强砂浆塑性抗可开裂性能的研究[J].新型建筑材料,2018,45(6):48-52.
[14]侯 帅,王文年,曾宪森,等.聚甲醛纤维增强混凝土劈裂抗拉强度的研究[J].武汉纺织大学学报,2013,26(3):39-42.
[15]杨富花,石宵爽,栾晨晨,等.聚甲醛纤维增强地聚物再生混凝土的力学性能研究[J].新型建筑材料,2021,48(5):52-56,70.
[16]仵鹏涛,刘中宪,吴成清,等.钢纤维对超高性能混凝土动态压缩特性的影响[J].天津大学学报(自然科学与工程技术版),2017,50(9):939-945.
[17]仰 涛,王宝珍,罗皓鹏.黄麻纤维混凝土的动态压缩力学性能研究[J].合肥工业大学学报(自然科学版),2020,43(8):1109-1114.
[18]梁宁慧,杨 鹏,刘新荣,等.高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J].材料导报,2018,32(2):288-294.
[19]张玉武,晏麓晖,李凌锋.UHMWPE纤维混凝土动态压缩力学性能研究[J].振动与冲击,2017,36(8):92-96.
[20]宋 力,胡时胜.SHPB数据处理中的二波法与三波法[J].爆炸与冲击,2005(4):368-373.
[21]李夕兵. 岩石动力学基础与应用[M].北京: 科学出版社,2014.
[22]田 威, 余 宸, 王肖辉, 等. 3D打印裂隙岩体动态力学性能及能量耗散规律初探[J]. 岩石力学与工程学报, 2022, 41(3): 446-456.
[23]周科平, 李杰林, 许玉娟, 等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 2012, 31(4): 731-737.
[24]党军亮, 牛建刚, 唐好令, 等. 碳纤维掺量及长度对混凝土力学性能的影响[J]. 合成纤维工业, 2021, 44(4): 55-58.
[25]陈峰宾, 许 斌, 焦华喆, 等. 玄武岩纤维混凝土纤维分布及孔隙结构表征[J]. 中国矿业大学学报, 2021, 50(2): 273-280.
[26]吴 伟, 冯 虎. 碳纤维混凝土动态力学特性试验研究[J]. 复合材料科学与工程, 2021(10): 13-18.
[27]张 华, 郜余伟, 李 飞, 等. 高应变率下聚丙烯纤维混凝土动态力学性能和本构模型[J]. 中南大学学报(自然科学版), 2013, 44(8): 3464-3473.
[28]ZHANG K, CHEN Y, FAN W,et al. Influence of Intermittent Artificial Crack Density on Shear Fracturing and Fractal Behavior of Rock Bridges: Experimental and Numerical Studies[J].Rock Mechanics and Rock Engineering, 2020, 53(2): 553-568.
[29]梁宁慧, 杨 鹏, 刘新荣, 等. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 材料导报, 2018, 32(2):288-294