Influence of Discharge Regulation on Tidal Current Asymmetry in the Changjiang River Estuary

WANG An-qi, ZHANG Wei, ZHU Yu-liang, CHEN Ting, JI Xiao-mei

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (3) : 18-24.

PDF(1534 KB)
PDF(1534 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (3) : 18-24. DOI: 10.11988/ckyyb.20211296
RIVER-LAKE PROTECTION AND REGULATION

Influence of Discharge Regulation on Tidal Current Asymmetry in the Changjiang River Estuary

  • WANG An-qi1,2, ZHANG Wei1,3, ZHU Yu-liang1, CHEN Ting1, JI Xiao-mei1
Author information +
History +

Abstract

The construction of engineering projects in the upper reaches of the Changjiang River has changed the flow and sediment conditions of the Changjiang River Estuary and the river discharges in flood and dry seasons, which further affects the tidal current asymmetry. Such asymmetry exerts evident impact on offshore sediment transport and geomorphic evolution in the estuary. The influence of discharge regulation on tidal current asymmetry in flood and dry seasons was studied by applying a two-dimensional hydrodynamic numerical model of the Changjiang River Estuary. The nonstationary harmonic method (NS_TIDE) and tidal skewness method were applied to analyze the variation trend of flow velocity asymmetry (FVA) and flow duration asymmetry(FDA). Results manifest that tidal current asymmetry intensifies prior to a slight decrease as tidal propagates landward. The increase of discharge in dry season at the estuary not only strengthens the ebb tide dominance in the middle and lower reaches of the estuary, but also prolongs the duration of low-water slack in most areas of the estuary. In major flood period, the weakening of flood peak enhances the ebb current velocity in the middle and upper reaches and shortens the duration of low-water slack in the upstream region, while the asymmetry of tidal flow velocity and flow duration shows an opposite trend in the downstream region.

Key words

discharge regulation / tidal skewness / tidal current asymmetry / river discharge / Changjiang River Estuary

Cite this article

Download Citations
WANG An-qi, ZHANG Wei, ZHU Yu-liang, CHEN Ting, JI Xiao-mei. Influence of Discharge Regulation on Tidal Current Asymmetry in the Changjiang River Estuary[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(3): 18-24 https://doi.org/10.11988/ckyyb.20211296

References

[1] JAY D A. Green's Law Revisited: Tidal Long-Wave Propagation in Channels with Strong Topography[J]. Journal of Geophysical Research, 1991, 96(C11): 20585.
[2] 李谊纯. 潮流不对称与推移质泥沙长期净输运[J]. 泥沙研究, 2013(5): 21-26.
[3] FRIEDRICHS C T,AUBREY D G. Non-Linear Tidal Distortion in Shallow Well-Mixed Estuaries:a Synthesis[J]. Estuarine,Coastal and Shelf Science,1988,27(5):521-545.
[4] NIDZIEKO N J. Tidal Asymmetry in Estuaries with Mixed Semidiurnal/Diurnal Tides[J]. Journal of Geophysical Research, 2010, 115(C8): C08006.
[5] SONG D, WANG X H, KISS A E, et al. The Contribution to Tidal Asymmetry by Different Combinations of Tidal Constituents[J]. Journal of Geophysical Research, 2011, 116(C12): C12007.
[6] GONG W, SCHUTTELAARS H, ZHANG H. Tidal Asymmetry in a Funnel-Shaped Estuary with Mixed Semidiurnal Tides[J]. Ocean Dynamics, 2016, 66(5): 637-658.
[7] 李谊纯. 一个潮流不对称计算方法及其在北仑河口的应用[J]. 海洋工程, 2014, 32(4): 110-116.
[8] 曹 勇, 陈吉余, 张二凤, 等. 三峡水库初期蓄水对长江口淡水资源的影响[J]. 水科学进展, 2006, 17(4): 554-558.
[9] YAN T, YANG Y P, LI Y B, et al. Possibilities and Challenges of Expanding Dimensions of Waterway Downstream of Three Gorges Dam[J]. Water Science and Engineering, 2019, 12(2): 136-144.
[10] 周建军, 张 曼. 近年长江中下游径流节律变化、效应与修复对策[J]. 湖泊科学, 2018, 30(6): 1471-1488.
[11] GUO L, VAN DER WEGEN M, ROELVINK J A, et al. The Role of River Flow and Tidal Asymmetry on 1-D Estuarine Morphodynamics[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(11): 2315-2334.
[12] HOITINK A J F, WANG Z B, VERMEULEN B, et al. Tidal Controls on River Delta Morphology[J]. Nature Geoscience, 2017, 10(9): 637-645.
[13] 恽才兴. 长江河口近期演变基本规律[M]. 北京: 海洋出版社, 2004.
[14] 杨正东, 朱建荣, 王 彪, 等. 长江河口潮位站潮汐特征分析[J]. 华东师范大学学报(自然科学版), 2012(3): 111-119.
[15] 徐宇程, 朱首贤, 张文静, 等. 长江大通站径流量的丰平枯水年划分探讨[J]. 长江科学院院报, 2018, 35(6): 19-23.
[16] ZHANG W, FENG H, HOITINK A J F, et al. Tidal Impacts on the Subtidal Flow Division at the Main Bifurcation in the Yangtze River Delta[J]. Estuarine, Coastal and Shelf Science, 2017, 196: 301-314.
[17] 张 蔚, 傅雨洁, 过津侃, 等. 潮波运动对长江口分流的影响[J]. 水科学进展, 2018, 29(4): 551-556.
[18] 章卫胜. 中国近海潮波运动数值模拟[D]. 南京: 河海大学, 2005.
[19] MATTE P, JAY D A, ZARON E D. Adaptation of Classical Tidal Harmonic Analysis to Nonstationary Tides, with Application to River Tides[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3): 569-589.
[20] DARWIN G H. Bakerian Lecture:On Tidal Prediction[J]. Philosophical Transactions of the Royal Society of London(A), 1891, 182: 159-229.
[21] LU S, TONG C, LEE D-Y, et al. Propagation of Tidal Waves up inYangtze EStuary during the Dry Season[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6445-6473.
[22] GODIN G. The Propagation of Tides up Rivers with Special Considerations on the Upper Saint Lawrence River[J]. Estuarine,Coastal and Shelf Science,1999,48(3):307-324.
PDF(1534 KB)

Accesses

Citation

Detail

Sections
Recommended

/