Research Progress of Freezing Damage Mechanism and Frost Resistance of Hydraulic Concrete

LIU Jun-ni, LU Jian-guo, GAO Jia-jia, YAN Zhong-rui, WAN Xu-sheng, ZHANG Jia-cheng

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (3) : 158-165.

PDF(3027 KB)
PDF(3027 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (3) : 158-165. DOI: 10.11988/ckyyb.20211069
HYDRAULIC STRUCTURE AND MATERIAL

Research Progress of Freezing Damage Mechanism and Frost Resistance of Hydraulic Concrete

  • LIU Jun-ni1, LU Jian-guo1, GAO Jia-jia2, YAN Zhong-rui1, WAN Xu-sheng1, ZHANG Jia-cheng1
Author information +
History +

Abstract

Freezing-thawing environment will cause freezing damage to hydraulic concrete, including skin peeling, cracking, and loosening, detrimental to the durability of hydraulic concrete in cold regions. The frost resistance of hydraulic concrete can be improved by adding materials to enhance the internal pore structure. We made a review on the influences of concrete structure, construction conditions and external environment on the freezing damage of hydraulic concrete in cold regions, and summarized the changes in strength, quality and elastic modulus of fiber concrete, nano-concrete and air-entrained concrete after freezing and thawing. Furthermore, we expounded the mechanism of enhancing the frost resistance of hydraulic concrete by adding materials, and put forward the research prospect in technologies enhancing the performance of hydraulic concrete in cold regions. Such researches should include: the failure characteristics and reinforcement technology of hydraulic concrete under multiple freeze-thaw cycles at ultra-low temperature with large temperature difference; the coupling effect of freeze-thaw, salt erosion and load on frost resistance of hydraulic concrete; a set of comprehensive evaluation system to objectively reflect the strengthening effect of external materials on concrete; the advantages of enhancement technologies, the economy, environmental protection, durability and other objective factors; verification and optimization of demonstration projects, and practical engineering application of reinforcement technologies of hydraulic concrete in cold regions.

Key words

hydraulic concrete / freezing damage / freezing resistance / reinforcement mechanism / research progress

Cite this article

Download Citations
LIU Jun-ni, LU Jian-guo, GAO Jia-jia, YAN Zhong-rui, WAN Xu-sheng, ZHANG Jia-cheng. Research Progress of Freezing Damage Mechanism and Frost Resistance of Hydraulic Concrete[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(3): 158-165 https://doi.org/10.11988/ckyyb.20211069

References

[1] 冉有华, 李 新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[2] 陈 希. 混凝土结构的耐久性设计[J]. 中国农村水利水电, 2004 (9): 66-68.
[3] 田 威, 韩 女, 张鹏坤. 混凝土冻融循环下动态破损机理的试验研究[J]. 振动与冲击, 2017, 36(8): 79-85.
[4] 胡少伟, 韦 华, 范 冰. 旱区寒区水工混凝土材料耐久性及其损伤断裂性能研究进展[J]. 水利与建筑工程学报, 2019, 17(2): 1-11.
[5] 路建国. 寒区水库大坝水热力相互作用过程及冰冻害防治技术研究[D]. 兰州: 中国科学院西北生态环境资源研究院, 2020.
[6] 马金龙, 李兆宇, 田 文, 等. 寒区渠道冻害破坏特征与成因[J]. 水利科学与寒区工程, 2018, 1(11): 28-33.
[7] 赵舒梦. 渠道冻害破坏的防治措施[J]. 甘肃科技, 2012, 28(6): 129-130.
[8] 刘华东. 低温冻害对渠道砼板产生裂缝破坏的实例分析[J]. 陕西水利, 2008(4): 64.
[9] 陈金山, 孙立君, 邵晓峰. 混凝土冻融破坏机理分析及寿命预测[J]. 内蒙古公路与运输, 2020(2):33-35.
[10] 周爱山, 刘 斌. 黄壁庄水库冰壅危害及防治措施[J]. 大坝与安全, 2019, 11(5): 5-8.
[11] 牛荻涛, 姜 磊, 白 敏. 钢纤维混凝土抗冻性能试验研究[J]. 土木建筑与环境工程, 2012, 34(4): 80-84.
[12] WANG J, NIU D. Influence of Freeze-Thaw Cycles and Sulfate Corrosion Resistance on Shotcrete with and without Steel Fiber[J]. Construction and Building Materials, 2016, 122: 628-636.
[13] KANG S, LEE Y, PARK Y, et al. Tensile Fracture Properties of an Ultra-high Performance Fiber Reinforced Concrete (UHPFRC) with Steel Fiber[J]. Composite Structures, 2010, 92(1): 61-71.
[14] JOHN V J, DHARMAR B. Effect of Steel Macro Fibers on Engineering Properties of Copperslag-Concrete[J]. Structural Concrete, 2020, 21(2): 689-702.
[15] 周茗如, 曹润倬, 周 群. 基于冻融循环条件下的纤维混凝土抗冻性试验研究[J]. 混凝土, 2018(7): 5-7.
[16] 李政伟, 黄金林, 陆金驰, 等. 冻融条件下钢纤维混凝土力学性能试验研究[J]. 四川建筑科学研究, 2019, 45(6): 74-77.
[17] LUO T, ZHANG C, SUN C, et al. Experimental Investigation on the Freeze-Thaw Resistance of Steel Fibers Reinforced Rubber Concrete[J]. Materials, 2020, 13(5): 1260-1272.
[18] 牛建刚, 左付亮, 王佳雷, 等. 塑钢纤维轻骨料混凝土的冻融损伤模型[J]. 建筑材料学报, 2018, 21(2): 235-240.
[19] 陈柳灼, 张广泰, 黄伟敏, 等. 纤维混凝土在冻融循环下的损伤研究[J]. 科学技术与工程, 2015, 15(5): 145-150.
[20] 李 伟, 闫科伟. 纤维混凝土抗盐冻性能试验研究[J]. 公路, 2020, 65(5): 253-257.
[21] 赵 军, 高丹盈, 李光辉. 聚丙烯纤维细石混凝土加固冻害混凝土的研究[J]. 建筑材料学报, 2009, 12(5): 575-579.
[22] 靳贺松, 李福海, 何肖云峰, 等. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[23] 金生吉, 李忠良, 张 健, 等. 玄武岩纤维混凝土腐蚀条件下抗冻融性能试验研究[J]. 工程力学, 2015, 32(5): 178-183.
[24] 赵燕茹, 宋 博, 王 磊, 等. 冻融循环作用后玄武岩纤维混凝土的断裂性能[J]. 建筑材料学报, 2019, 22(4): 575-583.
[25] 赵燕茹, 刘芳芳, 王 磊, 等. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[26] 赵燕茹, 高 健, 王 磊, 等. 单面冻融下玄武岩纤维混凝土抗冻性能研究[J]. 混凝土, 2020(4): 70-73.
[27] SHI J, ZHU H, WU Z, et al. Bond Behavior Between Basalt Fiber-reinforced Polymer Sheet and Concrete Substrate under the Coupled Effects of Freeze-Thaw Cycling and Sustained Load[J]. Journal of Composites for Construction, 2013, 17(4): 530-542.
[28] KHANFOUR M, EL REFAI A. Effect of Freeze-Thaw Cycles on Concrete Reinforced with Basalt-Fiber Reinforced Polymers (BFRP) Bars[J]. Construction and Building Materials, 2017, 145: 135-146.
[29] 聂红宾, 谷拴成, 高攀科, 等. 寒区碳纤维增强混凝土抗冻性能试验研究[J]. 混凝土与水泥制品, 2020(5): 46-50.
[30] 孟博旭, 许金余, 彭 光. 纳米碳纤维增强混凝土抗冻性能试验[J]. 复合材料学报, 2019, 36(10): 2458-2468.
[31] 张 阳. 冻融循环对钢纤维石墨电热混凝土性能的影响[D]. 广州: 广州大学, 2019.
[32] 张 阳, 刘春晖, 王海红, 等. 冻融循环对钢纤维-石墨导电混凝土发热性能的影响[J]. 混凝土与水泥制品, 2018(9): 61-64.
[33] 饶 瑞, 张 阳, 王海红, 等. 冻融对钢纤维石墨导电混凝土耐久性能的影响[J]. 混凝土与水泥制品, 2018(12): 45-48.
[34] DING Y, HUANG Y, ZHANG Y, et al. Self-monitoring of Freeze-Thaw Damage Using Triphasic Electric Conductive Concrete[J]. Construction and Building Materials, 2015, 101: 440-446.
[35] 肖 琦, 郝 帅, 宁喜亮. 混杂纤维混凝土的抗冻性能试验研究[J]. 混凝土, 2018(7): 54-57.
[36] LUO D,WANG Y,NIU D, et al.Evaluation of the Performance Degradation of Hybrid Steel-Polypropylene Fiber Reinforced Concrete under Freezing-Thawing Conditions[J]. Advances in Civil Engineering,2020,13(5):1260-1273.
[37] 李 燕, 申向东. 不同纤维掺量轻骨料混凝土冻融循环后力学性能及损伤量的研究[J]. 工程力学, 2009, 26(增刊1): 81-83.
[38] 朱晨飞, 刘晓军, 李文哲, 等. 混杂纤维混凝土冻融耐久性与损伤模型研究[J]. 工业建筑, 2015, 45(2): 10-14.
[39] 杨 益, 宁翠萍, 程瑞芳, 等. 掺钢和玄武岩纤维混凝土的冻融循环试验研究[J]. 水资源与水工程学报, 2017, 28(4): 182-186.
[40] 杜 鹏. 玄武岩-聚丙烯混杂纤维再生混凝土粘结性能研究[J]. 新型建筑材料, 2018, 45(10): 19-21.
[41] 牛龙龙, 张士萍. 氯盐环境下钢纤维混凝土冻融试验研究[J]. 南京工程学院学报(自然科学版), 2018, 16(3): 54-58.
[42] REN J, LAI Y. Study on the Durability and Failure Mechanism of Concrete Modified with Nanoparticles and Polypropylene Fiber under Freeze-thaw Cycles and Sulfate Attack[J]. Cold Regions Science and Technology,2021,188:103301.
[43] REN J, LAI Y, GAO J. Exploring the Influence of SiO2 and TiO2 Nanoparticles on the Mechanical Properties of Concrete[J]. Construction and Building Materials, 2018, 175: 277-285.
[44] SHAHRAJABIAN F, BEHFARNIA K. The Effects of Nano-particles on Freeze and Thaw Resistance of Alkali-activated Slag Concrete[J]. Construction and Building Materials, 2018, 176: 172-178.
[45] KALHORI H, BAGHERZADEH B, BAGHERPOUR R, et al. Experimental Study on the Influence of the Different Percentage of Nanoparticles on Strength and Freeze-Thaw Durability of Shotcrete[J]. Construction and Building Materials, 2020, 256: 119470.
[46] BEHFARNIA K, SALEMI N. The Effects of Nano-Silica and Nano-Alumina on Frost Resistance of Normal Concrete[J]. Construction and Building Materials, 2013, 48: 580-584.
[47] BAI S, GUAN X, LI G. Effect of the Early-age Frost Damage and Nano-SiO2 Modification on the Properties of Portland Cement Paste[J]. Construction and Building Materials, 2020, 262: 120098.
[48] 孔令康, 孙 敏. 海水冻融侵蚀下PVA-纳米SiO2混凝土性能试验研究[J]. 混凝土与水泥制品, 2021(1):50-53.
[49] 刘常涛.纳米材料对再生混凝土抗冻性能的影响[J]. 山东农业大学学报(自然科学版),2019,50(4):601-603.
[50] 丁永刚, 孙 蕾, 李学森, 等. 不同类型纳米粒子改性涂层对混凝土疏水和抗冻性能的影响[J]. 新型建筑材料, 2019, 46(8): 154-158.
[51] 刘召超. 多元矿物掺合料对泡沫混凝土性能影响研究[J]. 混凝土与水泥制品, 2021, https://kns.cnki.net/kcms/detail/32.1173.TU.20210531.1508.006.html.
[52] 刘 军, 欧阳鹏, 杨元全, 等. 双氧水泡沫混凝土抗冻性的影响因素[J]. 混凝土, 2014(6): 1-5.
[53] 张文杰. 火山灰材料对泡沫混凝土孔结构及抗冻性影响研究[D]. 长沙: 湖南大学, 2019.
[54] GONG J,ZHANG W.The Effects of Pozzolanic Powder on Foam Concrete Pore Structure and Frost Resistance[J]. Construction and Building Materials,2019,208:135-143.
[55] SHEN L, LI Q, GE W, et al. The Mechanical Property and Frost Resistance of Roller Compacted Concrete by Mixing Silica Fume and Limestone Powder: Experimental Study[J]. Construction and Building Materials, 2020, 239: 117882.
[56] 袁连旺. 纳米SiO2改性混凝土的抗氯离子渗透和抗冻性能研究[D]. 济南: 济南大学, 2017.
[57] LIU F, ZHANG T, LUO T, et al. The Effects of Nano-SiO2 and Nano-TiO2 Addition on the Durability and Deterioration of Concrete Subject to Freezing and Thawing Cycles[J]. Materials, 2019, 12(21): 3608.
[58] 王稷良, 廖华涛, 吴方政, 等. 引气剂对硬化混凝土力学性能与气泡特征参数的影响[J]. 公路交通科技, 2015, 32(1): 25-29.
[59] 张金喜, 郭明洋, 杨荣俊, 等. 引气剂对硬化混凝土结构和性能的影响[J]. 武汉理工大学学报, 2008, 30(5): 38-41.
[60] 董玉文, 陈 聪, 郑 磊, 等. 引气剂对冻融作用后混凝土力学性能的影响[J]. 混凝土与水泥制品, 2019(6): 14-16.
[61] 张小冬, 高南箫, 乔 敏, 等. 引气剂对溶液及混凝土性能的影响[J]. 新型建筑材料, 2018, 45(5): 36-40.
[62] ZHENG X H, GE Y, YUAN J. Influence of Air Content and Vibration Time on Frost Resistance of Air Entrained Concrete[J]. Advanced Materials Research, 2013, 857: 110-115.
[63] 陈应钦. 引气剂的作用及高性能混凝土引气剂的研究[J]. 新型建筑材料, 2002(2): 1-3.
[64] 罗 祥, 王 玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(增刊2): 213-217.
[65] 刘性硕, 郭小睿. 冻融循环条件下引气剂对混凝土抗渗性和抗冻性影响的试验研究[J]. 科学技术与工程, 2016, 16(4): 241-245.
[66] DU L, FOLLIARD K J. Mechanisms of Air Entrainment in Concrete[J]. Cement and Concrete Research, 2005, 35(8): 1463-1471.
[67] 杨钱荣. 掺粉煤灰和引气剂混凝土渗透性与强度的关系[J]. 建筑材料学报, 2004, 7(4): 457-461.
[68] 杨钱荣, 张树青, 杨全兵, 等. 引气剂对混凝土气泡特征参数的影响[J]. 同济大学学报(自然科学版), 2008, 36(3): 374-378.
[69] 刘加平, 尚 燕, 缪昌文, 等. 聚羧酸系减水剂引气方式对混凝土性能的影响[J]. 建筑材料学报, 2011, 14(4): 528-531.
[70] 李雪峰, 付 智. 高原低气压环境对引气混凝土含气量及气泡稳定性的影响[J]. 农业工程学报, 2015, 31(11): 165-172.
[71] 李 强, 王起才, 代金鹏, 等. 不同养护温度下引气剂对混凝土性能的影响研究[J]. 硅酸盐通报, 2017, 36(6): 1841-1846.
[72] 谢 剑, 唐 静, 孙雅丹. 超低温条件下引气剂对混凝土抗冻性能影响的试验研究[J]. 硅酸盐通报, 2020, 39(1): 12-19.
[73] 周伟玲, 尚 燕, 缪昌文, 等. 振捣方式和引气剂品种对混凝土气泡结构的影响[J]. 工业建筑, 2009, 39(增刊1): 958-960.
[74] ZHANG Y C, GAO L L. Effect of High Frequency Vibration on Pore Parameters and Frost Resistance of Air Entrained Concrete[J]. Advanced Materials Research, 2013, 671: 1680-1683.
[75] 于孝民, 梅明荣, 任青文. 新型引气剂对中低强度等级混凝土抗冻性能影响的试验研究[J]. 混凝土, 2009(9): 69-71.
PDF(3027 KB)

Accesses

Citation

Detail

Sections
Recommended

/