Reasonable strength criterion is of vital importance in the elastic-plastic analysis of surrounding rock of circular tunnel using power hardening-ideal plastic model. In the aim of obtaining a strength criterion suitable for the power hardening-ideal plastic model, first of all the four commonly used strength criteria for geotechnical materials were summarized; the unified linear equation of plane strain was acquired; then the unified solutions of stress, displacement and plastic zone radius of circular tunnel's surrounding rock in plastic zone and power hardening zone in the presence of seepage were deduced; and finally the theoretical strength effect, power hardening parameters, and pore water pressure on the elastic-plastic analysis of circular tunnel's surrounding rock were discussed. Research results revealed outstanding theoretical strength effect. Comparison with finite element analysis results suggest that Mogi-Coulomb criterion, unified strength theory with parameters b=1/2 and c=0, unified strength theory with parameters b=1 and c=0 are favorable; inscribed circle DP2 criterion and equivalent area circle DP4 criterion could follow in sequence; DP3 criterion and Mohr-Coulomb criterion are not recommended; circumscribed circle DP1 criterion and unified strength theory with parameters b=1 and c=1 should be used with caution. Among the power hardening parameters, the power hardening coefficient m had no impact on the radius of plastic zone, but the plastic zone displacement increased with the reduction of m; the plastic zone radius and displacement of surrounding rock both swelled with the growth of power hardening index n. The plastic zone radius, radial stress and tangential stress augmented with the climbing of pore water pressure. The research results offer an important theoretical basis for the support design of circular tunnel's surrounding rock with strong strain hardening effect.
Key words
surrounding rock of circular tunnel /
strength criterion /
seepage /
power hardening-ideal plastic model /
power hardening parameters
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 刘成学, 杨林德, 李 鹏. 考虑应力重分布的深埋圆形透水隧洞弹塑性解[J]. 工程力学, 2009,26(2):16-20.
[2] 李宗利, 任青文, 王亚红. 考虑渗流场影响深埋圆形隧洞的弹塑性解[J]. 岩石力学与工程学报, 2004,23(8):1291-1295.
[3] 王 睢, 钟祖良, 刘新荣. 基于D-P屈服准则考虑渗流影响的深埋有压圆形隧洞弹塑性解[J]. 现代隧道技术, 2019,56(1):39-46.
[4] 黄 阜, 杨小礼. 考虑渗透力和原始 Hoek-Brown 屈服准则时圆形洞室解析解[J]. 岩土力学,2010,31(5):1627-1632.
[5] 潘继良, 任奋华. 考虑渗流和剪胀的圆形巷道围岩广义SMP准则解[J]. 煤田地质与勘探, 2019,47(5):32-39.
[6] 张常光, 张庆贺, 赵均海. 考虑应变软化、剪胀和渗流的水工隧洞解析解[J]. 岩土工程学报, 2009, 31(12):1941-1946.
[7] 张常光, 胡云世, 赵均海, 等. 深埋圆形水工隧洞弹塑性应力和位移统一解[J]. 岩土工程学报, 2010, 32(11):1738-1745.
[8] 张黎明, 李 鹏, 孙林娜, 等. 考虑地下水渗流影响的衬砌隧洞弹塑性分析[J]. 长江科学院院报, 2008, 25(5):84-87,93.
[9] 侯公羽,李晶晶,杨 悦,等.基于幂强化本构模型的轴对称圆巷弹塑性解[J]. 岩土力学,2014,35(1):134-142.
[10] 吉嶺充俊, 胡小荣, 俞茂宏, 等. 强度理论效应对岩土工程结构分析的影响[J]. 岩石力学与工程学报, 2002, 21(增刊2): 2314-2317.
[11] 徐秉业, 刘信声. 应用弹塑性力学[M]. 北京:清华大学出版社,1995.
[12] 王云飞, 郑晓娟, 焦华喆, 等. 砂岩试验强度与强度准则预测结果对比分析[J]. 煤田地质与勘探,2016, 44(5):122-125.
[13] 郑颖人, 沈珠江, 龚晓南. 岩土塑性力学原理[M]. 北京:中国建筑工业出版社, 2002.
[14] MOGI K. Effect of the Intermediate Principal Stress on Rock Failure[J]. Journal of Geophysics Research, 1967, 72(20): 5117-5131.
[15] MOGI K. Effect of the Triaxial Stress System on the Failure of Dolomite and Limestone[J]. Tectonophysics,1971,11(11): 111-127.
[16] AL-AJMI A M, ZIMMERMAN R W. Relation between the Mogi and the CoulombFailure Criteria[J]. International Journal of Rock Mechanics and Ming Sciences, 2005, 42(3): 431-439.
[17] 高江平, 杨 华, 蒋宇飞, 等. 三剪应力统一强度理论研究[J]. 力学学报, 2017,49(6):1322-1334.
[18] 高江平, 刘雯支, 杨继强. 基于三剪应力统一强度理论的硬壳层软土地基承载力公式[J]. 岩土工程学报,2019,41(12): 2331-2337.