A large number of typical dual-structured slopes with loess layer on the upper part and sandstone layer on the lower part are encountered in cutting excavation projects in northwest China with complex geological background. To determine the instability deformation mechanism of such high cutting slope, we built a finite element model for the entire excavation process of the dual structure using GEO-studio with segment K35+092 along the expressway from Lanzhou to Yongjing as research background. The damage characteristics and failure mechanism of loess-sandstone dual structure slope were investigated systematically in terms of the horizontal and vertical displacement and the change of safety factor during staged excavation unloading, as well as the stress and strain of slope in excavation state. The results indicate that the instability and deformation mechanism of loess-sandstone dual-structured high cutting slope is determined by structural characteristics formation lithology. Under the action of excavation disturbance, the displacement of slope crest increased, the plastic strain in soil accumulated, and the steady state of the slope gradually weakened. The weak interlayer in the high cutting slope acts as sliding cushion which plays the role of lubrication and weakening the boundary, thus is a potential destabilizing factor of the slope. With the unloading of the slope, the upper part of the slope, namely, loess, slips and damages the lower slope body; in turn the joint action caused by the shear failure of the lower part caused the slumping of the upper part, resulting in an overall instability of the slope. In order to avoid instability and collapse of similar high cutting slope with dual structures, we put forward some corresponding reinforcement recommendations.
Key words
high cutting slope /
dual structure /
failure mechanism of instability /
finite element simulation /
safety factor
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 王 浩,王晓东,泮 俊.超高路堑边坡治理工程案例研究 I: 边坡失稳机制模拟分析[J] .岩石力学与工程学报,2017,36(4): 899-909.
[2] 张 斌,刘 高,聂德新,等.高速公路泥岩边坡时效变形破坏机理分析[J] . 岩石力学与工程学报,2003,22(12): 1988-1993.
[3] 黄 丽,罗文强,李飞翱,等.基于诱发因素作用特征的滑坡变形时序模型[J] .长江科学院院报,2015,32(10):28-32.
[4] 朱晗迓,马美玲,尚岳全. 顺倾向层状岩质边坡溃屈破坏分析[J] . 浙江大学学报(工学版),2004,38(9): 1144-1149.
[5] 李红卫. 陡倾顺层路堑高边坡变形破坏机制分析[J] . 岩土工程学报,2011,33(增刊1): 146-151.
[6] 刘婷婷,张 军.顺层岩质高边坡剪切滑动破坏的敏感性因素分析[J] .武汉理工大学学报(交通科学与工程版),2016,40(5): 792-796,802.
[7] 林 杭,曹 平,李江腾,等.层状岩质边坡破坏模式及稳定性的数值分析[J] .岩土力学,2010,31(10): 3300-3304.
[8] 李源亮,任光明,黄细超,等.攀西黑水河流域北部地区崩塌与滑坡分布规律[J] .长江科学院院报,2016,33(10):57-62.
[9] 许 强. 滑坡的变形破坏行为与内在机理[J] .工程地质学报,2012,20(2): 145-151.
[10] 廖小平. 类土质路堑边坡变形破坏类型及其稳定性分析[J] . 岩石力学与工程学报,2003,22(增刊2): 2765 -2772.
[11] 唐晓松,郑颖人,唐辉明.边坡变形破坏演化特征的数值分析[J] . 重庆大学学报,2013,36(10):101-113.
[12] 梅 林,王述红,佟可蕙,等. 不同交界面对二元结构边坡破坏影响试验研究[J] . 水利与建筑工程学报,2015, 13(3): 6-11.
[13] 赵 波,王保田,崔建娜,等. 基于强度折减法的二元结构边坡潜在滑动面位置分析[J] . 水利与建筑工程学报, 2014,12(2):100-104.
[14] 关振长,廖重辉,龚振峰,等. 基于振动台模型试验的二元结构边坡地震动力响应研究[J] . 工程地质学报,2017,25(1):139-146.
[15] 张宝龙,范 文.土-岩混合边坡的破坏模式研究[J] .公路交通科技,2018,35(4):33-39.