In this research, dynamic cyclic loading and unloading tests at strain rate of 10-4s-1 under different unidirectional constant pressures are conducted on a large multi-functional static and dynamic force triaxial apparatus. Constant lateral pressures are 0%, 5%, 10% of the static uniaxial compressive strength. On this basis, the variation of hysteresis loop of stress-strain curve of concrete under cyclic loading and unloading with varying stress level is researched. The relation between dispersion hysteresis loop and energy dissipation is analyzed, and the damage estimation model is built. Furthermore, the damage characteristics of concrete are researched based on energy dissipation statistics. The following conclusions are obtained: 1) in initial unloading stage, the stress decreases rapidly and deformation recovers slowly, but the speed of recovery begins to accelerate with stress declining; 2) dissipative energy significantly increases with the increase of lateral stress under the same number of cycles, indicating that unit dissipated energy is apparently sensitive to lateral stress; 3) the damage estimation model of concrete is verified to perform well in fitting the relationship between damage and cumulative residue strain; 4) the development of damage decreases gradually with the increase of lateral pressure ratio, and in addition, the path of damage accumulation is greatly extended.
Key words
concrete /
hysteresis loop /
lateral pressure ratio /
energy dissipation /
damage estimation model /
damage evolution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] TEDESCO J W, POWELL J C, ROSS C A, et al. A Strain-rate-dependent Concrete Material Model for ADINA[J]. Computer and Structures, 1997, 64(5): 1053-1067.
[2] 关 萍.定侧压下混凝土双轴动态抗压性能的试验研究[J].土木工程学报,2009,42(4):33-37.
[3] 肖诗云,张 剑.不同应变速率下混凝土受压损伤试验研究[J].土木工程学报,2010,43(3):40-45.
[4] CAUSATIS G. Strain-rate Effects on Concrete Behavior [J]. International Journal of Impact Engineering, 2011, 38(4): 162-170.
[5] PERONI M, SOLOMOS G, VIACCOZ B, et al. Large-scale High Strain-rate Tests of Concrete[C]∥EPJ Web of Conferences. doi: 10.1051/epjconf/20122601030.
[6] 王四巍,高丹盈,刘汉东.循环加卸载下塑性混凝土强度及变形特性[J].工业建筑,2009,39(5): 92-95.
[7] 胡海蛟,彭 刚,谢玖杨,等.混凝土循环加卸载动态损伤特性研究[J].工程力学,2015,32(6):141-145.
[8] 李同春,杨志刚.混凝土变参数等效应变损伤模型[J].工程力学, 2011, 28(3): 118-122.
[9] 梁 辉,彭 刚,邹三兵,等.循环荷载下混凝土应力-应变全曲线研究[J].土木工程与管理学报,2014,31(4):55-59.
[10]肖福坤,申志亮,刘 刚,等.循环加卸载中滞回环与弹塑性应变能关系研究[J].岩石力学与工程学报, 2014,33(9):1791-1797.
[11]赵 闯,武 科,李术才,等.循环荷载作用下岩石损伤变形与能量特征分析[J].岩土工程学报,2013,35(5):890-896.
[12]XIAO Jian-qing, DING De-xin, JIANG Fu-liang, et al. Fatigue Damage Variable and Evolution of Rock Subjected to Cyclic Loading[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(3): 461-468.
[13]刘 杰,李建林,张玉灯,等.循环荷载下岩体能量特征及变形参数分析[J].岩石力学与工程学报, 2010, 29(2): 3505-3513.
[14]邓华锋,胡 玉,李建林,等. 循环加卸载过程中砂岩能量耗散演化规律[J]. 岩石力学与工程学报,2016,35(增1):2869-2875.
[15]关 虓,牛荻涛,王家滨,等. 基于Weibull强度理论的混凝土冻融损伤本构模型研究[J]. 混凝土,2015,(5): 5-9.
[16]王春来,徐必根,李庶林,等.单轴受压状态下钢纤维混凝土损伤本构模型研究[J].岩土力学,2006,27(1): 151-154.