Application of Combinatorial Forecasting and R/S Analysis to Determining Foundation Pit’s Deformation Trend

WANG Juan, WANG Xing-ke

Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (5) : 103-108.

PDF(1478 KB)
PDF(1478 KB)
Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (5) : 103-108. DOI: 10.11988/ckyyb.20160625
ROCK-SOIL ENGINEERING

Application of Combinatorial Forecasting and R/S Analysis to Determining Foundation Pit’s Deformation Trend

  • WANG Juan, WANG Xing-ke
Author information +
History +

Abstract

Effective forecasting model for foundation pit’s deformation trend could guide construction and avoid accidents. In this article, GM (1,1), support vector machine and BP neural network were employed for single forecasting of pit deformation, and combinatorial forecasting models with fixed-weight and non-fixed weight were also established. Furthermore, R/S analysis was carried out to determine the deformation trend and verify the effectiveness of the combinatorial forecasting results. Results suggest that combinatorial forecasting could effectively improve the stability and precision of the prediction results, among which combinatorial BP neural network has the optimal results with the measured values and predicted values in good agreement. Moreover, the deformation of foundation pit will further increase and the stability has trend of weakening, in consistency with forecasting results. The research verified the effectiveness of combinatorial forecasting and R/S analysis in judging the deformation trend of foundation pit, and provided a new idea for the prediction of foundation pit deformation.

Key words

foundation pit / fixed weight combinatorial forecasting / non-fixed weight combinatorial forecasting / R/S analysis / stability analysis / trend judgment

Cite this article

Download Citations
WANG Juan, WANG Xing-ke. Application of Combinatorial Forecasting and R/S Analysis to Determining Foundation Pit’s Deformation Trend[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(5): 103-108 https://doi.org/10.11988/ckyyb.20160625

References

[1] 刘文生,吴作启,崔铁军,等. 基于改进灰色系统的深基坑变形预测方法研究[J]. 中国安全生产科学技术,2014,10(11):21-26.
[2] 吴 欢,周春波,秦 昆. 基于改进支持向量机的深基坑变形预测[J]. 地矿测绘,2015,31(4):25-28.
[3] 孟凡丽,郑 棋,李 燕,等. 基于BP神经网络的深基坑围护变形预测[J]. 浙江工业大学学报,2014,42(4):367-372.
[4] 王显鹏,黄声享. GM-BP组合预测模型在基坑沉降分析中的应用[J]. 测绘工程,2016,25(3):61-63,67.
[5] 贾 备,邬 亮. 基于灰色BP神经网络组合模型的基坑变形预测研究[J]. 隧道建设,2009,29(3):280-283,289.
[6] 王永明,李明峰,欧江霞,等. 基于加权组合模型的基坑位移变形分析与预测[J]. 地下空间与工程学报,2013,9(增1):1564-1567,1573.
[7] 庞建成,隆 然,马 娇. 基于改进R/S分析方法的深基坑变形预报预测研究[J]. 施工技术,2015,44(13):56-59,63.
[8] 何玉红. 考虑塑性发展系数的简化软土基坑回弹变形预测[J]. 长江科学院院报,2015,32(9):94-98,103.
[9] 张 璐,章广成,吴江鹏. 基坑边坡顶部地表变形影响因素分析[J]. 长江科学院院报,2014,31(10):151-155.
[10] 隆 然,董志勇. 基于小波去噪和神经网络的滑坡变形组合预测研究[J]. 路基工程,2015,(6):33-39.
[11] 邬长福,涂志刚,万佳威,等. 基于R/S分析与V/S分析的滑坡变形趋势判断及稳定性研究[J]. 水电能源科学,2015,(1):111-114,107.
PDF(1478 KB)

Accesses

Citation

Detail

Sections
Recommended

/