长江科学院院报 ›› 2015, Vol. 32 ›› Issue (10): 121-125,133.DOI: 10.11988/ckyyb.20140194

• 信息技术应用 • 上一篇    下一篇

基于光学和雷达图像的土地覆被分类

王新云1a,田建2,郭艺歌1a,何杰1b   

  1. 1.宁夏大学 a.西北退化生态系统恢复与重建教育部重点实验室;b.资源与环境学院,银川 750021;
    2. 成都市勘察测绘研究院,成都 610081
  • 收稿日期:2014-03-15 出版日期:2015-10-20 发布日期:2015-10-15
  • 作者简介:王新云(1974-),男,宁夏石嘴山人,助理研究员,博士,主要从事植被参数定量反演研究,(电话)0951-2062838(电子信箱)wxy _whu@hotmail.com。
  • 基金资助:
    国家自然科学基金项目(41261089,41201393);宁夏自然科学基金项目(NZ12146)

Land-cover Classification Based on HJ1B and ALOS Data

WANG Xin-yun1, TIAN Jian3, GUO Yi-ge1, HE Jie2   

  1. 1.Key Laboratory for the Regulation and Restoration of the Northwest Degraded Ecosystem of the Ministry ofEducation, Ningxia University,Yinchuan 750021,China
    2.School of Resources and Environment, Ningxia University, Yinchuan 750021, China;
    3.Chengdu Institute of Survey & Investigation,Chengdu 610081, China
  • Received:2014-03-15 Published:2015-10-20 Online:2015-10-15

摘要: 为寻求一种有效的提高多源遥感数据土地覆被分类制图精度的方法,探讨了融合HJ1B和ALOS/PALSAR图像进行遥感图像分类制图的方法。在对光学图像HJ1B和雷达遥感数据ALOS/PALSAR进行离散小波融合的基础上,应用分类决策树CART(Classification and Regression Tree)算法对融合的图像进行了土地覆被分类制图,并将其分类结果与支持向量机SVM(Support Vector Machine)分类结果进行对比。研究结果表明:将光学和雷达图像数据进行离散小波融合,采用分类决策树CART和支持向量机SVM进行图像分类,CART的分类精度要优于SVM的结果。可见,在光学图像HJ1B和雷达数据ALOS/PALSAR融合的基础上,应用CART能有效进行地物识别,提高图像的分类精度。

关键词: 环境卫星, 雷达图像, 图像融合, 分类决策树, 支持向量机, 图像分类

Abstract: In order to increase the accuracy of the land use and land cover (LULC) classification via multisource remote sensing data, we explored an effective algorithm by fusion of HJ1B images from optical sensors and ALOS/PALSAR data from radar remote sensing. In the process of fusion, the discrete wavelet transform (DWT) was utilized. The landcover classification mapping was performed by using the classification and regression tree (CART) approach. The classification result by CRT approach was compared with that by support vector machine (SVM) approach. The results show that: 1) through fusing HJ1B optical images with ALOS/PALSAR radar data, we obtain an overall Kappa coefficient (0.826 9) and total accuracy(85.60 %) by CRT approach, while by SVM approach the value is 0.816 7 and 84.82 %, respectively; 2) in terms of classification accuracy, CRT approach is superior to SVM approach; 3) by means of fusing optical images with radar data , we can effectively carry out object recognition and improve classification accuracy through applying CART approach.

Key words: environmental satellite, radar image, image fusion, CART, SVM, image classification

中图分类号: