长江科学院院报 ›› 2023, Vol. 40 ›› Issue (2): 95-101.DOI: 10.11988/ckyyb.20210026

• 岩土工程 • 上一篇    下一篇

基于CMFOA-SVM的边坡稳定性评价模型

陈光耀, 汪明武, 金菊良   

  1. 合肥工业大学 土木与水利工程学院,合肥 230009
  • 收稿日期:2021-01-07 修回日期:2021-04-02 出版日期:2023-02-01 发布日期:2023-03-07
  • 通讯作者: 汪明武(1972-),男,安徽歙县人,教授,博士,博士生导师,主要从事土工抗震、非饱和土、智能岩土工程及不确定性分析等方面的研究与教学工作。E-mail: wanglab307@foxmail.com
  • 作者简介:陈光耀(1996-),男,安徽定远人,硕士研究生,研究方向为岩土工程。E-mail: chengypoly@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFC1502405);国家自然科学基金项目(41172274)

CMFOA-SVM Model for Evaluating Slope Stability

CHEN Guang-yao, WANG Ming-wu, JIN Ju-liang   

  1. Hefei University of Technology, School of Civil and Hydraulic Engineering, Hefei 230009, China
  • Received:2021-01-07 Revised:2021-04-02 Published:2023-02-01 Online:2023-03-07

摘要: 边坡失稳往往会造成巨大的经济损失和人员伤亡,构建科学有效的边坡稳定性评价模型对于边坡灾害防治具有重要意义。针对边坡评价涉及多重不确定性,探讨了基于正态云模型、果蝇优化算法与支持向量机耦合的边坡稳定性评价模型,即利用正态云模型描述果蝇个体飞行方向和飞行距离的随机性与模糊性,以改进果蝇优化算法,进而应用基于正态云模型的果蝇算法(CMFOA)求解支持向量机(SVM)分类模型的最优参数组合,并结合实例应用及与GA-SVM、PSO-SVM和网格法-SVM对比分析,验证模型的可靠性。实例应用及对比结果表明,CMFOA-SVM模型应用于边坡稳定性评价有效可行,且评价准确率高,同时CMFOA算法的参数寻优效率高,也为其他分类问题提供了新的参考。

关键词: 边坡稳定性, 云模型, 果蝇算法, 支持向量机, 评价指标

Abstract: Since slope instability may cause huge economic losses and casualties, a rational and effective model for slope stability evaluation is of vital significance to disaster prevention. Considering multiple uncertainties of slope stability evaluation, we propose a slope stability evaluation model coupling fruit fly optimization algorithm (FOA), normal cloud model (CM), and support vector machine (SVM). The normal CM is used to optimize the FOA by describing the randomness and fuzziness in the foraging process of drosophila. The CM-based FOA, namely, CMFOA, is used to optimize the parameters of SVM classification model. The reliability of the proposed CMFOA-based SVM model is verified with a case study and comparisons with GA-SVM, PSO-SVM, and Grid Search-SVM. Results demonstrated that the proposed model is effective and feasible in slope stability evaluation. The accuracy and efficiency of parameter selection for classification using the CMFOA-SVM model are better than those of other models. It also overcomes the shortcoming of local optimal capability in traditional FOA and provides a new reference for other similar classification problems.

Key words: slope stability, cloud model, fruit fly optimization algorithm, support vector machine, evaluation indices

中图分类号: