长江科学院院报 ›› 2019, Vol. 36 ›› Issue (4): 55-59,76.DOI: 10.11988/ckyyb.20170944

• 工程安全与灾害防治 • 上一篇    下一篇

基于LS-SVM模型的白水河滑坡台阶状位移预测

李仕波,李德营,张玉恩,李杰   

  1. 中国地质大学武汉 工程学院,武汉 430074
  • 收稿日期:2017-08-17 修回日期:2017-09-25 出版日期:2019-04-01 发布日期:2019-04-18
  • 通讯作者: 李德营(1981-),男,河北玉田人,副教授,博士,主要从事地质灾害预测与风险分析方面的研究。E-mail:li-deying@163.com
  • 作者简介:李仕波(1992-),男,湖北孝感人,硕士研究生,主要从事滑坡灾害预测预报方面的研究。E-mail:lishibo@cug.edu.cn
  • 基金资助:
    国家自然科学基金项目(41772310);中国地质调查局二级项目(D5.7.3)

Displacement Prediction of Baishuihe Step-like Landslide by Least Square Support Vector Machine

LI Shi-bo, LI De-ying, ZHANG Yu-en, LI Jie   

  1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
  • Received:2017-08-17 Revised:2017-09-25 Published:2019-04-01 Online:2019-04-18

摘要: 滑坡位移是滑坡变形破坏最直观的表现,滑坡位移预测成功与否对于判别滑坡的演化趋势至关重要。滑坡位移曲线是受多种影响因素共同作用的非平稳时间序列,以三峡库区白水河滑坡为例,利用HP滤波分析方法提取滑坡位移的趋势项,趋势项位移主要是由滑坡自身特征决定的,具有较明显的非线性递增特性,采用多项式对其进行拟合预测;周期项受多种诱发因子(滑坡演化阶段、季节性降雨、库水位升降等)影响,利用最小二乘支持向量机模型(LS-SVM)对其进行训练与预测。将趋势项和周期项拟合预测结果叠加即为累计位移预测值,结果表明在监测点ZG93和XD-04的预测中,LS-SVM模型均具备较高的评价精度,在台阶状位移特征的滑坡位移预测中具有较好的适应性。

关键词: 台阶状位移, 位移预测, 时间序列, 滤波分析, 最小二乘支持向量机, 趋势项, 周期项, 白水河滑坡

Abstract: Landslide displacement is the most intuitive manifestation of landslide deformation, and the prediction of displacement plays a very important role in judging the evolution trend of landslide. Landslide displacement curve is a non-stationary time series affected by various factors. In this paper the trend displacement of Baishuihe landslide in the Three Gorges Reservoir is extracted by the HP filter method. Because of the nonlinear increasing characteristics, the trend displacement which is determined by the characteristics of the landslide is fitted and predicted by polynomial. In the meantime, induced by various factors such as evolution stages, seasonal rainfall, and water level fluctuation, the periodic displacement is trained and predicted by the model of the least squares support vector machine model (LS-SVM). The prediction result of the cumulative displacement is the superposition of the trend term and the periodic term. The results show that the LS-SVM model has high precision in the prediction of monitoring point ZG93 and XD-04, implying that LS-SVM model is of good adaptability in predicting step-like landslide.

Key words: step-like landslide, displacement prediction, time series, filter analysis, least squares support vector machine, trend term, periodic term, Baishuihe Landslide

中图分类号: