基于卷积神经网络的大坝安全监测数据异常识别

王丽蓉, 郑东健

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (1) : 72-77.

PDF(1492 KB)
PDF(1492 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (1) : 72-77. DOI: 10.11988/ckyyb.20191256
工程安全与灾害防治

基于卷积神经网络的大坝安全监测数据异常识别

  • 王丽蓉1,2,3, 郑东健1,2,3
作者信息 +

Anomaly Identification of Dam Safety Monitoring Data Based on Convolutional Neural Network

  • WANG Li-rong1,2,3, ZHENG Dong-jian1,2,3
Author information +
文章历史 +

摘要

为了减轻大坝安全监测数据异常识别的数据处理压力,解决传统方法难以辨别非最值异常点的问题,提出利用卷积神经网络(CNN)识别大坝安全监测数据异常模式。监测数据过程线的周期性及异常值的显著差别使CNN得以发挥图像分类功能,分别将存在单个突跳点、无异常、存在震荡段、台阶、多个突跳点、台坎的监测数据过程线作为6类图像,人工生成65 000张训练数据及6 500张测试数据,6类图像的数量比为1∶1.5∶1∶1∶1∶1。利用CNN对混合6种过程线图像的测试数据集进行图像分类,总体准确率为0.973 1,且6种图像的准确率都至少为0.93。进一步对CNN进行改进,构建CNN监测数据异常识别模型,增加数据异常位置搜索功能;模型输入为监测数据过程线图像,输出为图像编号、图像类别及异常位置。研究成果有助于实现大坝自动、及时预警,及时了解大坝安全状况。

Abstract

Traditional methods have difficulties in identifying the non-extreme value outliers in monitoring data of dam safety. To alleviate the pressure of data processing, we propose to use convolutional neural network (CNN) to identify the anomalies. The periodicity of process lines of monitoring data and the significant difference in outliers allow CNN to classify the process lines of monitoring data as six categories of images: process lines with single abrupt jump point, with no anomaly, with multiple abrupt jump points, with oscillating segments, with steps, and with berms. A total of 65,000 training data images and 6,500 testing data images are artificially generated. The ratio of the number of six types of images is 1∶1.5∶1∶1∶1∶1. The overall accuracy of CNN in classifying the mixed six process line images is 0.973 1, and the accuracy for each category is above 0.93. Moreover, we further improve the CNN and build an anomaly identification model by adding a function of searching the position of data anomalies. The input of the model is the process line image, while the output is the image number, image category and anomaly position.

关键词

大坝安全监测 / 数据异常识别 / 卷积神经网络 / 图像分类 / 非最值异常点

Key words

dam safety monitoring / anomaly identification of data / convolutional neural network / image classification / non-extreme value outliers

引用本文

导出引用
王丽蓉, 郑东健. 基于卷积神经网络的大坝安全监测数据异常识别[J]. 长江科学院院报. 2021, 38(1): 72-77 https://doi.org/10.11988/ckyyb.20191256
WANG Li-rong, ZHENG Dong-jian. Anomaly Identification of Dam Safety Monitoring Data Based on Convolutional Neural Network[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(1): 72-77 https://doi.org/10.11988/ckyyb.20191256
中图分类号: TV698.1   

参考文献

[1] 陶家祥,熊红阳,胡 波.论大坝安全监测数据异常值的判断方法[J].三峡大学学报(自然科学版), 2016,38(6):15-17,41.
[2] 顾冲时,吴中如.大坝与坝基安全监控理论及应用[M].南京:河海大学出版社,2006.
[3] 胡 越,罗东阳,花 奎,等.关于深度学习的综述与讨论[J]. 智能系统学报,2019,14(1):1-19.
[4] LIN Yi-zhou, NIE Zhen-hua, MA Hong-wei. Structural Damage Detection with Automatic Feature-Extraction through Deep Learning[J]. Computer-aided Civil and Infrastructure Engineering, 2017, 32(12): 1025-1046.
[5] YANG Xin-cong, LI Heng, YU Yan-tao, et al. Automatic Pixel-level Crack Detection and Measurement Using Fully Convolutional Network[J]. Computer-aided Civil and Infrastructure Engineering.2018, 33(12): 1090-1109.
[6] 邱津怡,罗 俊,李 秀,等. 基于卷积神经网络的多尺度葡萄图像识别方法[J].计算机应用,2019,39(10):2930-2936.
[7] 刘 坤,于晟焘.基于卷积神经网络的云雾遮挡舰船目标识别[J/OL].控制与决策.doi:10.13195/j.kzyjc.2019.0781.
[8] 段艳廷,郑晓东,胡莲莲,等. 基于3D半密度卷积神经网络的断裂检测[J].地球物理学进展,2019,34(6):2256-2261.
[9] KIM P. MatLab Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence[M]. Seoul, Korea: Apress, 2017.
[10]KRIZHEVSKY A, SUTSKEVER I, HINTON G E, et al. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 1097-1105.

基金

国家重点研发计划课题(2018YFC1508603,2018YFC0407104);国家自然科学基金重点项目(51739003)

PDF(1492 KB)

Accesses

Citation

Detail

段落导航
相关文章

/