基于EEMD与SE的IPSO-LSSVM模型在坝肩边坡变形预测中的应用

李桥, 巨能攀, 黄健, 王昌明, 赖若帆, 剪鑫磊

长江科学院院报 ›› 2019, Vol. 36 ›› Issue (12) : 47-53.

PDF(2182 KB)
PDF(2182 KB)
长江科学院院报 ›› 2019, Vol. 36 ›› Issue (12) : 47-53. DOI: 10.11988/ckyyb.20180545
工程安全与灾害防治

基于EEMD与SE的IPSO-LSSVM模型在坝肩边坡变形预测中的应用

  • 李桥, 巨能攀, 黄健, 王昌明, 赖若帆, 剪鑫磊
作者信息 +

A Prediction Method for Abutment Slope Deformation Based on IPSO-LSSVM Model Integrating Ensemble Empirical Mode Decomposition and Sample Entropy

  • LI Qiao, JU Neng-pan, HUANG Jian, WANG Chang-ming, LAI Ruo-fan, JIAN Xin-lei
Author information +
文章历史 +

摘要

坝肩边坡变形在外部因素影响下呈现出不确定性和随机性,从而不易预测。基于聚类模态分解(EEMD)、样本熵(SE)和改进型粒子群算法优化的最小二乘支持向量机(IPSO-LSSVM)方法,提出一种名为EEMD-SE-IPSO-LSSVM的坝肩边坡变形预测模型。首先,利用EEMD将原始坝肩边坡变形时间序列分解为若干个不同复杂度的子序列,并基于SE判定各子序列的复杂度,将相近的子序列进行合并重组以减少计算规模;然后,分别对各重组子序列建立IPSO-LSSVM预测模型;最后,将各预测分量进行叠加重构,得到最终的大坝变形预测值。以澜沧江苗尾水电站左岸坝肩边坡为例,将BPNN、RBFNN、LSSVM、EEMD-SE-LSSVM与EEMD-SE-PSO-LSSVM进行对比研究。结果表明,该模型的计算精度优于其他神经网络模型,具有较好的适宜性和稳定性,是一种可靠的坝肩边坡变形预测方法,能够为大坝安全监测提供有价值的参考。

Abstract

The deformation of abutment slope is difficult to be estimated as it is uncertain and random under the influence of many factors. We present a prediction model for the abutment slope deformation by coupling ensemble empirical mode decomposition (EEMD), sample entropy (SE), improved particle swarm optimization (IPSO), and least square support vector machine (LSSVM). First of all, the time series of abutment slope deformation is decomposed by the EEMD into several subsequences with different complexity. Secondly, the complexity of each subsequence is determined using SE, and similar subsequences are merged to reduce the computational scale. Subsequently, the prediction model based on IPSO-LSSVM is established for each newly merged subsequence. The final prediction value of abutment slope deformation is obtained through superimposing and reconstructing each component. The model is applied to predicting the abutment slope deformation on the left bank of Miaowei Hydropower Station on Lancang River as a case study, and the result is compared with those of BPNN, RBFNN, LSSVM, EEMD-SE-LSSVM and EEMD-SE-PSO-LSSVM models. The comparison demonstrates that the present model has higher accuracy and better stability than the other neural network models.

关键词

坝肩边坡 / 变形预测 / 聚类经验模态分解 / 样本熵 / 改进型粒子群算法 / 最小二乘支持向量机

Key words

abutment slope / deformation prediction / ensemble empirical mode decomposition (EEMD) / sample entropy (SE) / improved particle swarm optimization (IPSO) / LSSVM

引用本文

导出引用
李桥, 巨能攀, 黄健, 王昌明, 赖若帆, 剪鑫磊. 基于EEMD与SE的IPSO-LSSVM模型在坝肩边坡变形预测中的应用[J]. 长江科学院院报. 2019, 36(12): 47-53 https://doi.org/10.11988/ckyyb.20180545
LI Qiao, JU Neng-pan, HUANG Jian, WANG Chang-ming, LAI Ruo-fan, JIAN Xin-lei. A Prediction Method for Abutment Slope Deformation Based on IPSO-LSSVM Model Integrating Ensemble Empirical Mode Decomposition and Sample Entropy[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(12): 47-53 https://doi.org/10.11988/ckyyb.20180545
中图分类号: P642.22   

参考文献

[1] 周建平. 中国典型工程边坡: 水利水电工程卷[M] .北京:中国水利水电出版社, 2008.
[2] 李越超. 基于QPSO-LSSVM的边坡变形预测[J] . 山地学报, 2015, 31(3): 374-378.
[3] 杜太亮, 钟坚敏, 张永兴. 基于ANFIS模型的边坡变形预测办法[J] . 土木建筑与环境工程, 2005, 27(4): 55-58.
[4] 李捷斌, 孔令杰. 基于Kalman滤波的BP神经网络方法在大坝变形预测中的应用[J] . 大地测量与地球动力学, 2009, 29(4): 124-126.
[5] 李骅锦, 许 强, 王思澄, 等. WA-BT-ELM耦合模型在黄土滑坡位移预测中的应用[J] . 长江科学院院报, 2017, 34(9): 63-69.
[6] 任 超, 梁月吉, 庞光锋, 等. 经验模态分解和遗传小波神经网络法用于边坡变形预测[J] . 测绘科学技术学报, 2014, 31(6): 551-555.
[7] 邓冬梅, 梁 烨, 王亮清, 等. 基于时间序列EEMD重构的滑坡位移PSO-SVR预测方法:以三峡库区滑坡为例[J] . 岩土力学, 2017, 38(12): 1001-1010.
[8] 陶望雄, 张 杰, 王 青, 等. 泾河张家山站水沙多时间尺度分析及输沙量模拟[J] .长江科学院院报, 2016, 33(2): 10-13.
[9] WANG T, ZHANG M C, YU Q H, et al. Comparing the Application of EMD and EEMD on Time-frequency Analysis of Seismic Signal[J] . Journal of Applied Geophysics, 2012, 83(6): 29-34.
[10] 茆美琴, 龚文剑, 张榴晨, 等. 基于 EEMD-SVM 方法的光伏电站短期出力预测[J] . 中国电机工程学报, 2013, 33(34): 17-24.
[11] WU Z H, HUANG N E. Ensemble Empirical Mode Decomposition: A Noise-assisted Data Analysis Method[J] . Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[12] 王 新, 孟玲玲. 基于EEMD-LSSVM的超短期负荷预测[J] . 电力系统保护与控制, 2015, 43(1) :61-67.
[13] JIANG H K, LI C L, LI H X. An Improved EEMD with Multiwavelet Packet for Rotating Machinery Multi-fault Diagnosis[J] . Mechanical Systems & Signal Processing, 2013, 36(2) :225-239.
[14] RICHMAN J S, MOORMAN J R, Physiological Time Series Analysis Using Approximate Entropy and Sample Entropy[J] . American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278: 2039-2049.
[15] WIDODO A, SHIM M, CAESARENDRA W, et al. Intelligent Prognostics for Battery Health Monitoring Based on Sample Entropy[J] . Expert Systems with Applications, 2011, 38(9): 11763-11769.
[16] 张学清, 梁 军, 张 熙, 等. 基于样本熵和极端学习机的超短期风电功率组合预测模型[J] . 中国电机工程学报, 2013, 33(25): 33-40.
[17] PINCUS S M. Assessing Serial Irregularity and Its Implications for Health[J] . Annals New York Academy of Sciences, 2002, 954: 245-267.
[18] 孟锦根. 基于PSO-LSSVM的干旱区中长期降水预测模型研究[J] .长江科学院院报, 2016, 33(10): 36-40.
[19] ZHU X, MA S Q, XU Q, et al. A WD-GA-LSSVM Model for Rainfall-triggered Landslide Displacement Prediction[J] . Journal of Mountain Science, 2018, 15(1): 156-166.
[20] 张 俊, 殷坤龙, 王佳佳, 等. 基于时间序列与 PSO-SVR耦合模型的白水河滑坡位移预测研究[J] . 岩石力学与工程学报, 2015, 34(2): 382-391.
[21] 游坤骏. 澜沧江苗尾水电站右坝肩边坡倾倒岩体开挖变形响应及稳定性分析[D] .四川:成都理工大学, 2014.

基金

国家创新研究群体科学基金项目(41521002);高等学校博士学科点专项科研基金项目(20135122130002)

PDF(2182 KB)

Accesses

Citation

Detail

段落导航
相关文章

/