基于多种优化支持向量机及V/S分析法的隧道变形预测及趋势判断

张碧

长江科学院院报 ›› 2018, Vol. 35 ›› Issue (4) : 67-71.

PDF(1647 KB)
PDF(1647 KB)
长江科学院院报 ›› 2018, Vol. 35 ›› Issue (4) : 67-71. DOI: 10.11988/ckyyb.20160857
工程安全与灾害防治

基于多种优化支持向量机及V/S分析法的隧道变形预测及趋势判断

  • 张碧
作者信息 +

Application of Optimized Support Vector Machines and V/S Analysis to Tunnel Deformation Prediction and Trend Judgment

  • ZHANG Bi
Author information +
文章历史 +

摘要

隧道变形具有明显的非线性特征,为实现其准确预测,基于卡尔曼滤波和多种优化的支持向量机模型对隧道变形进行预测,以探讨不同预测模型的适用性,并进一步进行组合预测;同时,利用V/S分析法计算变形序列的Hurst指数,以判断隧道的变形趋势,并与预测结果进行对比,综合判断隧道的变形规律。结果表明:最小二乘支持向量机的优化效果最好,且预测隧道后4个周期均为增长变形;同时,变形序列和速率序列V/S分析的Hurst指数分别为0.845和0.602,均>0.5,得出隧道后期变形呈持续增长趋势,与预测分析一致,验证了思路的有效性。

Abstract

Tunnel deformation is of obvious non-linear characteristics. In the present research, models based on the Kalman filter and a variety of optimization support vector machines are built for accurate prediction. The applicability of various models is discussed, and further combinatorial prediction is conducted. Meanwhile, V/S analysis is adopted to calculate the Hurst index of deformation series for deformation trend judgment. The judgment result iscompared with prediction result in the aim of obtaining the comprehensive deformation rules of tunnel. Results suggest that the least squares support vector machine has the optimum effect, and the deformation in the next four cycles would keep increasing. Moreover, the Hurst index of deformation series and deformation rate series is 0.845 and 0.602, respectively, both larger than 0.5, indicating that the deformation in late stage would experience a sustained growth, which is consistent with the prediction result.

关键词

隧道 / 支持向量机 / 变异系数 / V/S分析 / 变形预测 / 趋势判断

Key words

tunnel / support vector machine / coefficient of variation / V/S analysis / deformation prediction / trend judgment

引用本文

导出引用
张碧. 基于多种优化支持向量机及V/S分析法的隧道变形预测及趋势判断[J]. 长江科学院院报. 2018, 35(4): 67-71 https://doi.org/10.11988/ckyyb.20160857
ZHANG Bi. Application of Optimized Support Vector Machines and V/S Analysis to Tunnel Deformation Prediction and Trend Judgment[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(4): 67-71 https://doi.org/10.11988/ckyyb.20160857
中图分类号: U459.2   

参考文献

[1] 赵洪波. 支持向量机在隧道围岩变形预测中的应用[J]. 岩石力学与工程学报,2005,24(4):649-652.
[2] 刘开云,乔春生,刘保国. 高速公路连拱隧道施工变形预测的GA-SVR智能模型研究[J]. 公路交通科技,2009,26(5):75-79.
[3] 刘 宇. 基于支持向量机的隧道变形预测模型研究[J].内蒙古科技大学学报,2015,34(4):370-373.
[4] 罗亦泳,张 豪,张立亭. 基于遗传支持向量机的多维灰色变形预测模型研究[J]. 浙江工业大学学报,2010,38(1):79-83.
[5] 李晓龙,魏 丹,王复明. 基于线性规划支持向量机的隧道围岩变形预测[J]. 中外公路,2009,29(4):157-162.
[6] 范思遐,周奇才,熊肖磊,等. 基于粒子群与支持向量机的隧道变形预测模型[J]. 计算机工程与应用,2014,50(5):6-10,15.
[7] 邬长福,涂志刚,万佳威,等. 基于R/S分析与V/S分析的滑坡变形趋势判断及稳定性研究[J]. 水电能源科学,2015,33(1):111-114,107.
[8] 左昌群,刘代国,丁少林,等. 基于分形理论的隧道地表沉降分析及预测[J]. 长江科学院院报,2016,33(4):51-56.
[9] 王 成,何美琳,覃 婕,等. 半参数Kalman滤波模型在GPS变形数据处理中的应用[J]. 施工技术,2015,44(增2):818-821.

PDF(1647 KB)

Accesses

Citation

Detail

段落导航
相关文章

/