三峡库区是我国滑坡灾害广泛发育的地区之一,滑坡灾害易发性评价对库区的防灾减灾有重要意义。在滑坡灾害易发性指标信息量的基础上,构建了信息量支持下的SVM模型,并对滑坡灾害易发性进行了评价。该模型根据地层岩性、地质构造、坡度、坡向、坡型结构、土地利用类型、水、归一化植被指数,以及上述指标的总信息量,共9类指标组成的数据集进行SVM训练,得到评价模型;运用该评价模型对研究区全区滑坡灾害易发性进行评价,并以模型决策值的零点和突变点确定易发性等级划分标准。并以三峡库区万州主城区为研究区验证模型,研究表明信息量支持下SVM模型的训练样本精度为81.41%,验证样本精度为91.11%,优于常用的信息量模型,滑坡的高易发区和较高易发区占研究区总面积的47.05%,主要集中在人类工程活动强烈的长江干支流两侧,结果与已知滑坡分布基本一致,表明该模型在研究区具备较好的适用性。
Abstract
Three Gorges Reservoir is one of the landslide disaster-prone areas in China, and it is meaningful to as-sess the landslides susceptibility of Three Gorges Reservoir both for disaster prevention and reduction. The WI (Weighted-Information)-SVM(Support Vector Machine) model was adopted to assess the landslide susceptibility on the basis of entropy and SVM models. The SVM’s training dataset was comprised by the entropy of nine influence factors, including the stratum lithology, the geological structure, the slope gradient, the direction and structure of slope, the land use, the influence of water, and the NDVI (Normalized Difference Vegetation Index), together with the sum of them. The landslide susceptibility of the whole study area was evaluated, and the result of landslide susceptibility was ranked according to the zero value and abrupt change value of the decision value of model. The landslide susceptibility in Wanzhou district was assessed as an example to validate the WI-SVM model. The research result showed that the accuracy of the training dataset was 81.41% and verification dataset 91.11%, superior to commonly used models. Area with high and relatively high susceptibility accounts for 47.05% of the entire area, mainly in the mainstream and tributaries of the Yangtze River with strong human activities. The results are consistent with the distribution of landslides which has been known, indicating that the WI-SVM model has good applicability for the study area.
关键词
滑坡灾害 /
信息量 /
支持向量机 /
易发性评价 /
三峡库区
Key words
landslide hazards /
weighted-information /
support vector machine /
susceptibility assessment /
Three Gorges Reservoir area
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄润秋.20世纪以来中国的大型滑坡及其发生机制.岩石力学与工程学报,2007,26(3):433-453.
兰恒星,周成虎,王苓涓,等.地理信息系统支持下的滑坡–水文耦合模型研究. 岩石力学与工程学报,2003,22(8):1309-1314.
王佳佳,殷坤龙,杜 娟,等.基于GIS考虑准动态湿度指数的滑坡危险性预测水文–力学耦合模型研究.岩石力学与工程学报,2013,32(2):1309-1314.
殷坤龙.滑坡灾害预测预报.武汉:中国地质大学出版社,2004:12-26.
彭 令,牛瑞卿,陈丽霞.GIS支持下三峡库区秭归县滑坡灾害空间预测.地理研究,2010,29(10):1889-1898.
张永兴,文海家,欧 敏.滑坡灾害智能预测理论及其应用.北京:科学出版社,2005.
VAPNIK V. Natural of Statistical Learning Theory. New York: John Wiley and Sons, 1995.
TAX D M J, DUIN R P W. Support Vector Domain Description. Pattern Recognition Letters, 1999, 20(11/12/13): 1191-1199.
MARJANOVI M, KOVA EVI M, BAJAT B, et al. Landslide Susceptibility Assessment Using SVM Machine Learning Algorithm. Engineering Geology, 2011,12(3): 225-234.
李秀珍,孔纪明,王成华.多分类支持向量机在滑坡稳定性判识中的应用.吉林大学学报·地球科学版,2010,40(3):631-637.
武雪玲,任 福,牛瑞卿.斜坡单元支持下的滑坡易发性评价支持向量机模型.武汉大学学报,2013,38(12):1499-1503.
陈玉萍,袁志强,周 博,等.遗传算法优化BP网络在滑坡灾害预测中的应用研究.水文地质工程地质,2012,39(1):114-118.
王佳佳,殷坤龙,肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例.岩石力学与工程学报,2014,33(4):797-808.
刘雪梅. 三峡库区万州区地貌特征及滑坡演化过程研究.武汉:中国地质大学,2010.
殷坤龙.三峡库区万州区近水平地层滑坡成因机制与防治工程研究.武汉:中国地质大学出版社,2007:1-28.
王 坚.滑坡灾害遥感遥测预警理论及方法.徐州:中国矿业大学出版社,2010:67-77.
基金
国家高技术研究发展计划(863)项目(2012AA121303)