由于大型深水群桩基础受到复杂的环境影响,其基桩轴力的变化与环境因素之间呈现复杂非线性关系。利用在解决小样本、非线性、高维数方面具有很强能力的支持向量机,对苏通大桥群桩基础轴力实测数据进行分析,预测了一段时间内轴力的变化。并采用了蚁群算法(ACO)寻找模型最优参数,由此建立了ACO-SVM模型,避免了人为选择参数的盲目性。为方便对比,建立了传统SVM与RBF神经网络预测模型,对比了ACO-SVM,SVM,RBF这3个模型的预测结果。研究表明,与传统SVM,RBF的预测结果相比,ACO-SVM模型具有更高的可信度和预测精准度,且具有更强的泛化能力,在大型深水群桩基础的轴力预测中具有一定的工程应用价值。
Abstract
As for large-scale pile group foundation with deep water, relationship between axial force of pile shaft and environmental factor is complex and nonlinear due to complex environment. In light of advantages of support vector machine(SVM) method in solving small sample size, nonlinearity, and high dimension, we use the method to analyze measured data of axial force in pile group foundation of Suzhou-Nantong bridge, and to predict axial force for a period. Then, we look for optimal parameters by using ant colony optimization(ACO) and establish ACO-SVM model, which can avoid optionally choosing parameters. Meanwhile, we establish prediction models based on traditional SVM and RBF neural network and compare prediction results of the 3 models. The results show that, CO-SVM model is of high reliability, high accuracy and strong generalization ability, superior to SVM and RBF. Finally, CO-SVM model can be applied to predict axial force in large-scale pile group foundation with deep water.
关键词
深水群桩基础 /
支持向量机 /
蚁群算法 /
轴力预测 /
ACO-SVM模型
Key words
deep-water pile group foundation /
support vector machine /
ant colony algorithm /
axial force prediction /
ACO-SVM model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 蒋 刚,林鲁生,刘祖德,等. 边坡变形的灰色预测模型[J]. 岩土力学,2000, 21(3): 244-246.
[2] 李 波,刘明军,张治军. 未确知滤波法和灰色模型在大坝变形监测中的应用[J]. 长江科学院院报, 2011, 28(10): 86-89.
[3] 张治强,冯夏庭,杨成祥. 非线性位移时间序列进化神经网络建模的适应性研究[J]. 岩土力学,1999, 20(4): 20-24.
[4] 许霄霄,牛瑞卿,叶润青,等. 基于外因相应的滑坡位移预测模型研究[J]. 长江科学院院报,2013, 30(7): 42-47.
[5] 徐 峰,汪 洋,杜 娟, 等. 基于时间序列分析的滑坡位移预测模型研究[J]. 岩石力学与工程学报, 2011, 30(4): 746-751.
[6] 肖浩波,谷艳昌. 混凝土坝安全监控最小二乘支持向量机模型[J]. 长江科学院院报,2013, 30(5): 34-37.
[7] 陈国良,韩文廷. 人工神经网络理论研究进展[J].电子学报,1996,23(2): 70-75.
[8] CHAPPELLE O, VAPNIK V, BOUSQUET O. Choosing Multiple Parameters for Support Vector Machines [J]. Machine Learning, 2002, 46(1): 131-160.
[9] VAPNIK V N.The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
[10]DORIGO M, MANIEZZO V, COLORNI A. Ant System: Optimization by A Colony of Cooperating Agents[J]. IEEE Transaction on Systems, Man, and Cybernetics: Part B, 1996, 26(1): 29-41.
[11]庄 严,白振林,许云峰. 基于蚁群算法的支持向量机参数选择方法研究[J]. 计算机仿真, 2011,28(5): 216-219.
[12]WANG Yan-xia, QIAN Long-jun. Weapon Target Assignment Problem Satisfying Expected Damage Probabilities Based on Ant Colony Algorithm[J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 939-944.
基金
国家“十一五”科技支撑资助项目(2006BAG04B05);国家重点基础研究发展计划(973计划)项目(2002CB412707)