PDF(6549 KB)
长江上游珍稀特有鱼类资源的栖息地生境特征及增殖放流点优化
赵亮, 赵文贵, 成江, 胡胜利, 赵志超, 刘国旺
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (3) : 68-75.
PDF(6549 KB)
PDF(6549 KB)
长江上游珍稀特有鱼类资源的栖息地生境特征及增殖放流点优化
Habitat Characteristics and Optimization of Proliferation and Releasing Points for Rare and Endemic Fish Resources in the Upper Reaches of the Yangtze River
长江上游地区的水库建设、河道改道、堤防修建和水文调节等人类活动对鱼类栖息地造成了严重影响,导致栖息环境恶化和大量栖息地的丧失。为了深入了解这种情况,选取长江上游保护区中段典型代表性朱沱站中4个典型河流断面近3 a的生境数据,分析典型断面的水文特征、水文情势、水环境质量、流速、水深以及珍稀特有鱼类空间分布特征,获取全面的鱼类生境特征数据。基于分析结果,提出建设完善的珍稀特有鱼类增殖放流措施。研究发现,99%的珍稀特有鱼类信号采集于低流速区(0.0~1.4 m/s),其中80%左右的鱼类聚集在流速低于0.8 m/s的缓流区;在冬季越冬期间,鱼群位置点的水深平均值为44.28 m,最小值为15 m,最大值为57.47 m。长江上游的绝对水深在23~56 m之间时,不足以提供鱼类栖息。但在蓄水期,水位抬高进而在同时满足流速、水深和干扰少等条件下,能够改善珍稀特有鱼类的生存环境。通过研究长江上游珍稀特有鱼类资源的生境特征,可以更好地了解鱼类的分布和迁徙规律,辅助合理规划和管理渔业资源。同时,研究增殖措施可以指导人工放流等管理行为,有助于恢复和增强鱼类种群,维持渔业可持续发展。
Human activities, including reservoir construction, river diversion, embankment construction, and hydrological regulation in the upper reaches of the Yangtze River, have severely impacted fish habitats, causing environmental degradation and substantial habitat loss. To gain deeper insights into this issue, we selected habitat data over the past three years from four typical river sections at Zhutuo Station, which is in the middle part of the Yangtze River protection zone. We analyzed the hydrological features, water environment quality, flow velocity, water depth, and spatial distribution patterns of rare and endemic fish species to comprehensively characterize fish habitats. Based on the analysis results, we propose to establish comprehensive measures for the proliferation and release of rare and endemic fish species. Our research shows that 99% of the rare and endemic fishes aggregate in areas with flow velocities of 0.0-1.4 m/s, among which approximately 80% gather in slow-flow zones with velocities below 0.8 m/s. During the wintering period, the average water depth where fishes gather is 44.28 meters, with a minimum of 15 meters and a maximum of 57.47 meters. When the absolute water depth in the upper reaches of the Yangtze River ranges from 23 to 56 meters, it fails to provide suitable fish habitats. However, during the water-storage period, raising the water level can improve the living conditions of rare and endemic fish species while meeting requirements for flow velocity, water depth, and minimal interference. Studying the habitat characteristics of rare and endemic fish resources in the upper reaches of the Yangtze River enables us to better understand fish distribution and migration patterns, facilitating the rational planning and management of fishery resources. Simultaneously, researching proliferation measures can guide management actions such as artificial release, aiding in the restoration and enhancement of fish populations and ensuring the sustainable development of fisheries.
长江上游 / 珍稀特有鱼类 / 生境特征 / 鱼类栖息地 / 增殖途径
upper reaches of the Yangtze River / rare and endemic fishes / habitat characteristics / fish habitat / proliferation pathway
| [1] |
|
| [2] |
刘建康, 曹文宣. 长江流域的鱼类资源及其保护对策[J]. 长江流域资源与环境, 1992, 1(1):17-23.
(
|
| [3] |
徐薇, 乔晔, 龚昱田. 长江上游鱼类资源变迁及其保护评析[J]. 人民长江, 2012, 43(1): 67-71.
(
|
| [4] |
|
| [5] |
|
| [6] |
唐成, 邓华堂, 田辉伍, 等. 长江上游珍稀特有鱼类国家级自然保护区干流段鱼类群落结构特征分析[J]. 水产学报, 2023, 47(2): 81-100.
(
|
| [7] |
常剑波, 陈永柏, 高勇, 等. 水利水电工程对鱼类的影响及减缓对策[C]// 中国水利学会2008学术年会论文集(上册). 北京: 中国水利水电出版社, 2008:685-696.
(
|
| [8] |
张崇良, 徐宾铎, 薛莹, 等. 渔业资源增殖评估研究进展与展望[J]. 水产学报, 2022, 46(8): 1509-1524.
(
|
| [9] |
轩中亚, 姜涛, 刘洪波, 等. 基于耳石微化学分析的鱼类种群生态学研究进展[J]. 渔业科学进展, 2022, 43(1):1-14.
(
|
| [10] |
张俊, 车轩, 贾广臣, 等. 人工坝体对长江上游鱼类栖息地流域水动力学特性的影响[J]. 农业工程学报, 2021, 37(5): 140-146.
(
|
| [11] |
李欢玮, 赵广举, 穆兴民, 等. 渭河水文情势变化评估及归因分析[J]. 水土保持研究, 2023, 30(1): 91-96, 105.
(
|
| [12] |
崇祥玉, 宋碧曾, 梁珊, 等. 太子河河流等级对鱼类群落结构及环境因子的影响[J]. 水生态学杂志, 2022, 43(2): 86-94.
(
|
| [13] |
刘玮, 辛美丽, 周健, 等. 基于生境适宜性指数模型的俚岛海黍子生境层级分布[J]. 应用生态学报, 2021, 32(3): 1061-1068.
为了深入了解海黍子生境,利用模型对山东俚岛海黍子生境进行适宜性分析,分别选取温度、盐度、水深、浊度、底质、无机氮浓度、磷酸盐浓度和距海藻床距离8种环境因子,通过层次分析法赋值因子权重,结合空间分析方法建立了海黍子HSI模型。利用该模型对山东俚岛近岸海域2018年春、秋两季的环境因子调查结果进行了海黍子生境分析。结果表明: 研究区域内的海黍子海藻床区域主要由极佳生境和适宜生境组成,春季和秋季的分布面积分别占14.2%和18.6%。海黍子生境层级分布随季节而变化,且不同季节的生境层级具有一定的空间重合性。温度和磷酸盐浓度的适宜性变化具有明显的季节性差异,是导致俚岛海黍子HSI季节变化的主要原因。海黍子HSI模型不仅可用于检测海黍子海藻床区域的生境层级分布,还能发现海黍子潜在的适宜生境区域。这为今后开展海黍子资源保护和人工增殖工作提供了科学参考。
(
We used the habitat suitability index (HSI) model to determine the<i> </i>habitat suitability of <i>Sargassum muticum</i> in Lidao bay, Shandong Province. Eight environmental factors, including temperature, salinity, depth, turbidity, sediment, inorganic nitrogen concentration, phosphate concentration, distance from seaweed bed, were used as input variables for HSI model. The weight of each factor was defined by the analytic hierarchy process (AHP). We implemented the<i> </i>distribution of <i>S. muticum</i> suitable habitat along the coast of Lidao bay with the HSI model, based on the investigation of the environmental factors in spring and autumn 2018. The results showed that most of the <i>S. muticum</i> natural habitats were identified as excellent habitat and suitable habitat, accounting for 14.2% in spring and 18.6% in autumn. The distribution of habitat hierarchies varied across seasons, while habitat hierarchies showed spatial intersections in different seasons. There were significant seasonal differences in the factor suitability indices of temperature and phosphate concentration, which accounted for the seasonal HSI variations of <i>S. muticum</i> in Lidao bay. The<i> S. muticum</i> HSI model could be used to detect the habitat hierarchies distribution of <i>S. muticum</i>, and also to find its potential suitable habitat, which could provide a reference for future resource conservation and artificial proliferation of <i>S. muticum</i>.
|
| [14] |
陈冬伶, 芦璐, 颜亦琪. 黄河内蒙古河段大流量封河的利与弊[J]. 水文, 2021, 41(5): 7-12.
(
|
| [15] |
盛丰, 冯天国, 王福科, 等. 浏阳河长沙段CODMn、NH3-N和TP综合降解系数研究[J]. 中国环境科学, 2021, 41(2): 669-676.
(
|
| [16] |
郭世旭, 杨枭杰, 王月兵, 等. 基于频偏应答的ADCP流速现场校准方法研究[J]. 计量学报, 2021, 42(1): 53-58.
(
|
| [17] |
顾继一, 陆永军, 刘怀湘, 等. 东江沙卵石河床浅滩-深潭序列水沙演变特征[J]. 水科学进展, 2022, 33(1):111-122.
(
|
| [18] |
宋远柳, 刘晓收. 夏、秋季南黄海小型底栖动物空间分布格局及其环境影响因素[J]. 海洋学报, 2023, 45(1):38-52.
(
|
| [19] |
刘睿, 李若男. 漓江大型底栖动物空间分布及水力驱动因子[J]. 长江科学院院报, 2022, 39(8): 34-40.
大型底栖动物群落结构及其分布是评价河流生态健康的重要指标。基于典型水文年丰、枯两季调查,分析了漓江流域中、下游典型河段底栖动物群落结构空间分布格局、摄食类群及其与水力要素的响应关系。结果表明:①典型河段群落结构中腹足纲个体占优,优势物种为中华圆田螺和短沟蜷;丰水期底栖动物密度为829 ind/m<sup>2</sup>,枯水期为264 ind/m<sup>2</sup>;②摄食类群中刮食者占优势,且滤食者、收集者和捕食者枯水期的相对丰度高于丰水期,刮食者枯水期的相对丰度低于丰水期,摄食类群中游的相对丰度大于下游;③典型河段生物多样性呈现空间异质性,且中游明显低于下游;④流速、底部剪切力及底质粒径是影响漓江底栖生物枯水期分布的主要因素,水深和层流层厚度则是影响丰水期分布的主要因素,分选系数、层流层厚度是底栖生物多样性最主要的影响因素。研究成果可为变化水力条件下漓江水生态修复提供支持。
(
The structure and distribution of macrobenthos community are important indicators for evaluating the ecological health of rivers.Based on the surveys in wet and dry seasons of typical hydrological years,we analyzed the spatial distribution of benthic community structure,feeding groups and their responses to hydraulic factors in the middle and lower reaches of the Lijiang River Basin.The results demonstrate that:1) Gastropods are predominant in the community structure of a typical river section,and <i>Cipangopaludina cathayensis</i> and <i>Semisulcospira sp</i>.are dominant species;the density of benthic animals is 829 ind/m<sup>2</sup> in wet periods and 264 ind/m<sup>2</sup> in dry periods.2) Scrapers are dominant in the feeding groups,and their relative abundance in dry season is lower than that in wet season,while the relative abundances of collector-filterers,collector-gatherers,and predators in dry season are higher than those in wet season.The relative abundances of feeding groups in the middle reach are greater than those in the lower reach.3) The biodiversity of typical river sections is spatially heterogeneous,significantly lower in the middle reach than in the lower reach.4) Velocity,bottom shearing force and geological particle size are major factors affecting the distribution of benthic organisms in the Lijiang River during dry season;water depth and laminar layer thickness are major factors in wet season.The sorting coefficient and the thickness of laminar layer are the most important factors that affect the benthic biodiversity.
|
/
| 〈 |
|
〉 |