三峡水库变动回水区蓄水期鱼群空间分布及生境特征

徐观兵, 王丽, 杨胜发, 杨威, 彭玉凤, 孙章

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (12) : 46-52.

PDF(2897 KB)
PDF(2897 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (12) : 46-52. DOI: 10.11988/ckyyb.20201212
水环境与水生态

三峡水库变动回水区蓄水期鱼群空间分布及生境特征

  • 徐观兵1,2, 王丽1,2, 杨胜发1,2, 杨威2, 彭玉凤1,2, 孙章1,2
作者信息 +

Spatial Distribution and Habitat Characteristics of Fish Swarm in Fluctuating Backwater Zone of Three Gorges Reservoir in Impoundment Period

  • XU Guan-bing1,2, WANG Li1,2, YANG Sheng-fa1,2, YANG Wei2, PENG Yu-feng1,2, SUN Zhang1.2
Author information +
文章历史 +

摘要

三峡水库蓄水后变动回水区水动力条件和泥沙运动发生了显著变化,鱼类栖息地也受到了不同程度的影响。为了掌握三峡变动回水区朝天门至涪陵河段蓄水期鱼类栖息地现状,研究采用Bisonics DT-X科学回声鱼测仪对朝天门至涪陵河段进行了鱼群空间分布及生境特征监测。结果表明:蓄水期该河段水环境因子空间分布变化不显著,表明水环境因子不是影响该河段鱼群分布的主要原因;水深与流速在该河段变化较大,是影响鱼类栖息的关键因子;监测到8个大型鱼群平均密度为(64.6±13.5) ind/(103 m3),鱼类平均体长为(16.8±4.6 )cm,以中小型鱼为主;回水沱、深潭及分汊河道是鱼类喜居河段,是鱼类重要栖息地。研究结果可为三峡水库变动回水区鱼类保护和栖息地修复提供科学依据。

Abstract

Impoundment in the Three Gorges Reservoir has remarkably changed the hydrodynamic conditions and sediment movement in the fluctuating backwater zone and has affected the fish habitat to varying degrees. The habitat characteristics and distribution of fish swarm in the fluctuating backwater zone of the Three Gorges Reservoir from Chongqing to Fuling was obtained by using the scientific echo sounder Bisonics DT-X). Results revealed no significant spatial distribution of water environmental factors in the study reach, implying that water environmental factors were not the major factors that affect the distribution of fish. Water depth and flow velocity, which varied notably, were key factors affecting fish habitat distribution. The average density of the eight fish swarm was (64.6±13.5) ind/(103 m3), and the fish swarm was dominated by small and medium-sized fish whose average body length was (16.8±4.6)cm. The backwater pool, deep pool and branching channel are fish’s favorite habitat sections. The results provided scientific basis for fish protection and habitat restoration in the fluctuating backwater zone of the Three Gorges Reservoir.

关键词

鱼群分布 / 生境特征 / 三峡水库 / 变动回水区 / 蓄水期 / 水声学

Key words

fish distribution / habitat characteristics / Three Gorges Reservoir / fluctuating backwater area / impoundment period / hydroacoustic

引用本文

导出引用
徐观兵, 王丽, 杨胜发, 杨威, 彭玉凤, 孙章. 三峡水库变动回水区蓄水期鱼群空间分布及生境特征[J]. 长江科学院院报. 2021, 38(12): 46-52 https://doi.org/10.11988/ckyyb.20201212
XU Guan-bing, WANG Li, YANG Sheng-fa, YANG Wei, PENG Yu-feng, SUN Zhang. Spatial Distribution and Habitat Characteristics of Fish Swarm in Fluctuating Backwater Zone of Three Gorges Reservoir in Impoundment Period[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(12): 46-52 https://doi.org/10.11988/ckyyb.20201212
中图分类号: Q958   

参考文献

[1] WANG Y, TAO Y, SHENG D, et al. Quantifying the Change in Streamflow Complexity in the Yangtze River[J]. Environmental Research, 2019,180:108833.
[2] XIAO Y, ZHOU G, YANG F S. 2D Numerical Modelling of Meandering Channel Formation[J]. Journal of Earth System Science, 2016,125(2): 251-267.
[3] LIU F, WANG X, WANG M, et al. Diet Partitioning and Trophic Guild Structure of Fish Assemblages in Chishui River, the Last Undammed Tributary of the Upper Yangtze River, China[J]. River Research and Applications, 2019,35(9): 1530-1539.
[4] 孟 宝, 张继飞, 叶 华, 等. 长江上游珍稀特有鱼类国家级自然保护区鱼类产卵场功能现状分析及保护启示[J]. 长江流域资源与环境, 2019,28(11):2772-2785.
[5] LI W, WANG J, YANG S, et al. Determining the Existence of the Fine Sediment Flocculation in the Three Gorges Reservoir[J]. Journal of Hydraulic Engineering, 2015,141(2): 5014008.
[6] JIANG D, WU B, CHENG Z, et al. Towards a Probabilistic Model for Estimation of Grounding Accidents in Fluctuating Backwater Zone of the Three Gorges Reservoir[J]. Reliability Engineering and System Safety, 2020,205, doi: 10.1016/j.ress.2020.107239.
[7] 陈 淼, 苏晓磊, 黄慧敏, 等. 三峡库区河流生境质量评价[J]. 生态学报, 2019,39(1):196-205.
[8] 徐 薇, 杨 志, 陈小娟, 等. 三峡水库生态调度试验对四大家鱼产卵的影响分析[J]. 环境科学研究, 2020,33(5):1129-1139.
[9] 李 斌, 王志坚, 岳兴建, 等. 三峡库区175m蓄水对小江回水区主要经济鱼类能量来源的影响[J]. 应用生态学报, 2013,24(6):1715-1721.
[10] 李 建, 夏自强, 戴会超, 等. 三峡初期蓄水对典型鱼类栖息地适宜性的影响[J]. 水利学报, 2013,44(8):892-900.
[11] 解崇友, 胡佐灿, 蔡瑞钰, 等. 三峡库区重要支流8种优势鱼类生长及其资源开发现状评估[J]. 中国水产科学, 2019,26(3):504-511.
[12] YE S, LIAN Y, GODLEWSKA M, et al. Day-night Differences in Hydroacoustic Estimates of Fish Abundance and Distribution in Lake Laojianghe, China[J]. Journal of Applied Ichthyology, 2013,29(6):1423-1429.
[13] 郑亦婷, 韩 鹏, 倪晋仁, 等. 长江武汉江段鱼类群落结构及其多样性研究[J]. 应用基础与工程科学学报, 2019,27(1):24-35.
[14] 董 纯, 杨 志, 龚 云, 等. 三峡库区干流鱼类资源现状与物种多样性保护[J]. 水生态学杂志, 2019, 40(1):15-21.
[15] 赵莎莎, 叶少文, 谢松光, 等. 三峡水库香溪河鱼类资源现状及渔业管理建议[J]. 水生生物学报, 2015,39(5):973-982.
[16] 杨汉运, 黄道明. 雅鲁藏布江中上游鱼类区系和资源状况初步调查[J]. 华中师范大学学报(自然科学版), 2011,45(4):629-633.
[17] 邵 科, 杨 志, 唐会元, 等. 观音岩水电站蓄水前后金沙江攀枝花江段鱼类群落结构及变化特征[J]. 长江流域资源与环境, 2020,29(11):2417-2426.
[18] 杨 志, 唐会元, 朱 迪, 等. 三峡水库175 m试验性蓄水期库区及其上游江段鱼类群落结构时空分布格局[J]. 生态学报, 2015(15):125-136.
[19] 王 珂,李 翀,段辛斌,等.三峡水库175 m蓄水前鱼类分布特征研究[J].淡水渔业,2012,42(3):23-27.
[20] HUANG G, WANG Q, CHEN X, et al. Evaluating Impacts of an Extreme Flood on a Fish Assemblage Using Hydroacoustics in a Large Reservoir of the Yangtze River Basin, China[J]. Hydrobiologia, 2019,841(1): 31-43.
[21] 连玉喜, 黄 耿, Malgorzata G, 等. 基于水声学探测的香溪河鱼类资源时空分布特征评估[J]. 水生生物学报, 2015(5):920-929.
[22] TAN X, KANG M, TAO J, et al. Hydroacoustic Survey of Fish Density, Spatial Distribution, and Behavior Upstream and Downstream of the Changzhou Dam on the Pearl River, China[J]. Fisheries Science, 2011,77(6):891-901.
[23] CHEN D, ZHANG X, TAN X, et al. Hydroacoustic Study of Spatial and Temporal Distribution of Gymnocypris Przewalskii (Kessler, 1876) in Qinghai Lake, China[J]. Environmental Biology of Fishes, 2009,84(2):231-239.
[24] 王顺天, 雷俊山, 贾海燕, 等. 三峡水库2003~2017年水质变化特征及成因分析[J]. 人民长江, 2020,51(10):47-53.
[25] 黄 玥, 黄志霖, 肖文发, 等. 三峡水库水位调度对出库水质影响分析与水质预测[J]. 水资源与水工程学报, 2020,31(4):78-85.
[26] 杨会来. 三峡水库明月峡滩段航标配布设计及维护探讨[J]. 中国水运, 2017(5):34-36.
[27] DUNCAN A,KUBECKA J.Hydroacoustic Methods of Fish Surveys[M].Bristol: National Rivers Authority,1993.
[28] 李卫明, 陈求稳, 刘德富, 等. 基于景观生态学指标的鱼类生境质量评价方法研究[J]. 长江科学院院报, 2014,31(6):7-11.
[29] 于海成, 线薇微. 1998—2001年长江口近海鱼类群聚结构及其与环境因子的关系[J]. 长江科学院院报, 2010,27(10):88-92.
[30] 孙立元, 危起伟, 张 辉, 等. 基于水声学的长江上游向家坝至宜宾江段鱼类空间分布特征[J]. 淡水渔业, 2014,44(1):53-58.
[31] FOOTE, KENNETH G. Fish Target Strengths for Use in Echo Integrator Surveys[J]. Journal of Acoustic Society of America, 1998,82(3):981-987.
[32] 张馨月, 马沛明, 高千红, 等. 三峡大坝上下游水质时空变化特征[J]. 湖泊科学, 2019,31(3):633-645.
[33] 张佳磊, 郑丙辉, 刘德富, 等. 三峡水库大宁河支流浮游植物演变过程及其驱动因素[J]. 环境科学, 2017,38(2):535-546.
[34] 陈在新, 王文一. 影响鱼类生长的水质因子机理与控制[J]. 畜牧与饲料科学, 2009,30(1):15-17.
[35] MOWBRAY F K. Changes in the Vertical Distribution of Capelin (Mallotus villosus) off Newfoundland[J]. ICES Journal of Marine Science, 2002,59(5):942-949.
[36] 杜林霞, 牛兰花, 黄 童. 三峡水库水温变化特性及影响分析[J]. 水利水电快报, 2017,38(6):58-63.
[37] 张 远, 林佳宁, 王 慧, 等. 中国地表水环境质量标准研究[J]. 环境科学研究, 2020,33(11):2523-2528.
[38] WANG X, LIU Z, MIAO J, et al. Relationship between Nutrient Pollutants and Suspended Sediments in Upper Reaches of Yangtze River[J]. Water Science and Engineering, 2015,8(2): 121-126.
[39] 杨 宇, 严忠民, 乔 晔. 河流鱼类栖息地水力学条件表征与评述[J]. 河海大学学报(自然科学版), 2007(2):125-130.
[40] 王 珂. 三峡库区鱼类时空分布特征及与相关因子关系分析[D]. 北京:中国水利水电科学研究院, 2013.
[41] 杜 浩, 班 璇, 张 辉, 等. 天然河道中鱼类对水深、流速选择特性的初步观测:以长江江口至涴市段为例[J]. 长江科学院院报, 2010,27(10):70-74.
[42] 王晓刚,严忠民,张幸农. 河床高差对Y型汇流口螺旋流结构的影响[J].水科学进展,2008,19(6):828-834.
[43] 王新星, 于 杰, 李永振, 等. 南海主要上升流及其与渔场的关系[J]. 海洋科学, 2015,39(9):131-137.
[44] YANG S,XU G,WANG L,et al. Field-derived Relationships between Fish Habitat Distribution and Flow-Sediment Conditions in Fluctuating Backwater Zone of the Three Gorges Reservoir[J].Ecological Informatics,2021(4):101273.
[45] BRANDT S B,GERKEN M,HARTMAN K J,et al. Effects of Hypoxia on Food Consumption and Growth of Juvenile Striped Bass (Morone saxatilis)[J]. Journal of Experimental Marine Biology and Ecology,2009,381:S143-S149.
[46] 郭爱环, 刘金殿, 原居林, 等. 用水声学评估水库鱼类资源增殖放流的效果[J]. 水产科学, 2018,37(2):201-207.

基金

国家重点研发计划课题基金项目(2016YFC0402104);国家自然科学基金项目(5167090829)

PDF(2897 KB)

Accesses

Citation

Detail

段落导航
相关文章

/