为了探讨长江上游典型山区森林转型过程,在长江经济带绿色发展背景下,以贵州省遵义市为研究区,分析了城镇化加速时期森林转型时空过程,并采用Logistic-CA-Markov耦合模型对2025年森林转型空间格局进行预测。研究表明:2000—2010年间遵义市森林转型特征显著,10 a间林地面积增加113 033.98 hm2;林地变化存在显著的空间分异特征;从土地利用类型转移看,新增林地来源主要是耕地,林地减少主要是由于水域和建设用地占用,林地的土地利用图谱变化以前期变化型和后期变化型为主;利用Logistic-CA-Markov耦合模型对2025年林地空间格局进行模拟,保持当前城镇化和经济发展水平下,未来15 a森林恢复仍将持续,但恢复速度趋缓。研究成果对指导长江上游生态屏障建设及科学认识山区城镇建设、经济发展与生态保护之间的关系具有一定意义。
Abstract
The forest tranition in Zunyi City, Guizhou Province, a typical mountainous area in the upper reaches of Yangtze River, is investigated under the background of green development of the Yangtze River economic belt. The spatiotemporal process of forest transition in the period of accelerated urbanization is analyzed, and the Logistic-CA-Markov coupling model is adopted to predict the spatial pattern of forest transition in 2025. The research unveils that the forest transition characteristics in Zunyi City are significant from 2000 to 2010, with an increase of 113 033.98 hm2 in the area of forestlands in the decade. The change of forestland is characterized by significant spatial differentiation. From the perspective of land-use type transfer, newly-increased forestland is mainly transformed from cultivated land, while the decrease of forestland is mainly due to the occupation of water area and construction land. The Logistic-CA-Markov coupling model was used to simulate the spatial restoration pattern of forestland in 2025. Under the current level of urbanization and economic development, the restoration of forestland will continue in the future 15 years; but such recovery will slow down. The research findings are of significance in guiding the construction of ecological barrier in the upper reaches of the Yangtze River and scientifically understanding the relation among the urbanization, economic development and ecological protection.
关键词
森林转型 /
时空格局 /
动态模拟 /
山区 /
遵义市 /
长江上游
Key words
forest transition /
spatial-temporal pattern /
dynamic simulation /
mountainous area /
Zunyi city /
the upper reaches of Yangtze River
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 龙花楼. 中国乡村转型发展与土地利用[M]. 北京:科学出版社,2012.
[2] 许建初. 全球林业转型研究[J]. 科学观察,2009,4(6):50-51.
[3] 联合国粮食及农业组织. 2011年世界森林状况[M]. 罗马:联合国粮食及农业组织,2011.
[4] 李凌超,刘金龙,许亮亮,等. 森林转型:一个文献综述[J]. 林业经济,2012(10):98-103.
[5] 赵宇鸾, 葛玉娟, 旷成华,等. 乡村振兴战略下贵州山区森林转型路径研究[J]. 贵州师范大学学报(自然科学版), 2018,36(1):1-7.
[6] 彭睿文,罗 娅,余军林, 等. 中国西南地区2009—2015年植被覆盖度变化及其与降雨的关系[J]. 贵州师范大学学报(自然科学版), 2017,35(5):15-23.
[7] FOSTER D R, MOTZKIN G, SLATER B. Land-use History as Long-term Broad-scale Disturbance: Regional Forest Dynamics in Central New England[J]. Ecosystems, 1998, 1(1): 96-119.
[8] TOTMAN C. Plantation Forestry in Early Modern Japan: Economic Aspects of Its Emergence[J]. Agricultural History,1986, 60(3): 23-51.
[9] ZHANG Y.Deforestation and Forest Transition:Theory and Evidence in China,World Forests from Deforestation to Transition?[M].Berlin:Springer Netherlands,2000:41-65.
[10]LAMBIN E F, MEYFORIDT P. Land Use Transitions: Socio-ecological Feedback versus Socio-economic Change[J]. Land Use Policy, 2010, 27(2): 108-118.
[11]LAMBIN E F, MEYFORIDT P. Global Land Use Change, Economic Globalization, and the Looming Land Scarcity[J]. PNAS, 2011, 108(9): 3465-3472.
[12]FANG J, CHEN A, PENG C, et al. Change in Forest Biomass Carbon Storage in China between 1949 and 1998[J]. Science, 2001, 292(5525): 2320-2322.
[13]RUDEL T, COOMES O T, MORAN E, et al. Forest Transitions: Towards a Global Understanding of Land Use Change[J]. Global Environmental Change, 2005, 15(1): 23-31.
[14]GRAINGER A. The Forest Transition: An Alternative Approach[J]. Area, 1995, 27(3): 242-251.
[15]DAN K. Forest Transition in Mexico: Institutions and Forests in a Globalized Countryside[J]. Professional Geographer, 2003, 55(2): 227-237.
[16]李秀彬,赵宇鸾. 森林转型、农地边际化与生态恢复[J].中国人口资源与环境,2011,21(10):91-95.
[17]ZHAO Y L, ZHANG M, LI X B, et al. Farmland Marginalization and Policy Implications in Mountainous Areas: A Case Study of Renhuai City, Guizhou[J]. Journal of Resources and Ecology, 2016,7(1): 61-67.
[18]LIU J, HULL V, BATISTELLA M, et al. Framing Sustainability in a Telecoupled World[J]. Ecology & Society, 2013, 18(2): 344-365.
[19]BARIER E B,BURGESS J C,GRAINGER A. The Forest Transition: Towards a More Comprehensive Theoretical Framework[J]. Land Use Policy,2010(27):98-107.
[20]SETO K C,REENBERG A.Rethinking Global Land Use in an Urban Era[R].Cambridge,USA:MIT Press,2014.
[21]国家林业局.中国林业统计年鉴2012[M].北京:中国林业出版社,2013:87-88.
[22]LI Y,VIA A,YANG W,et al. Effects of Conservation Policies on Forest Cover Change in Giant Panda Habitat Regions, China[J].Land Use Policy,2013,33(4):42-53.
[23]MA X Z, WANG Z. Estimation of Provincial Forest Carbon Sink Capacities in Chinese Mainland[J]. Chinese Science Bulletin, 2011, 56(1): 433-439.
[24]BARBIER E B, BURGESS J C. The Economics of Tropical Deforestation[J]. Journal of Economic Surveys, 2001, 15(3): 413-433.
[25]苏永莉,阎建忠,周 洪. 重庆市的森林转型:时空格局与动态模拟[J]. 西南大学学报(自然科学版), 2016,38(6):82-91.
[26]刘永强,龙花楼. 长江中游经济带土地利用转型时空格局及其生态服务功能影响[J]. 经济地理, 2017,37(11):161-170.
[27]韩继冲,喻舒琳,杨青林,等. 1999—2015年长江流域上游植被覆盖特征及其对气候和地形的响应[J]. 长江科学院院报, 2019, 36(9): 51-57.
[28]袁 喆,喻志强,冯兆洋,等. 长江流域陆地生态系统NDVI时空变化特征及其对水热条件的响应[J]. 长江科学院院报, 2019, 36(11): 7-15.
[29]邢容容, 马安青, 张小伟,等. 基于Logistic-CA-Markov模型的青岛市土地利用变化动态模拟[J]. 水土保持研究, 2014, 21(6):111-114.
[30]吴健生, 冯 喆, 高 阳,等. 基于DLS模型的城市土地政策生态效应研究:以深圳市为例[J]. 地理学报, 2014, 69(11):1673-1682.
[31]张显峰,崔伟宏. 集成GIS和细胞自动机模型进行地理时空过程模拟与预测的新方法[J].测绘学报,2001,30(2):148-155.
[32]马士彬,张勇荣,安裕伦. 基于Logistic-CA-Markov模型的石漠化空间变化规律研究[J].中国岩溶,2015, 34(6):591-598.
[33]王友生, 余新晓, 贺康宁,等. 基于CA-Markov模型的藉河流域土地利用变化动态模拟[J]. 农业工程学报, 2011, 27(12):330-336.
[34]汪佳莉,吴国平,范庆亚,等. 基于CA-Markov模型的山东省临沂市土地利用格局变化研究及预测[J].水土保持研究,2015,22(1):212-216.
[35]刘淑燕, 余新晓, 李庆云,等. 基于CA-Markov模型的黄土丘陵区土地利用变化[J]. 农业工程学报, 2010, 26(11):297-303.
[36]何 丹,金凤君,周 璟. 基于Logistic-CA-Markov的土地利用景观格局变化:以京津冀都市圈为例[J]. 地理科学,2011,31(8):903-910.
[37]龚文峰,袁 力,范文义. 基于CA-Markov的哈尔滨市土地利用变化及预测[J].农业工程学报,2012,28(14):216-222.
[38]李京京,吕哲敏,石小平,等.基于地形梯度的汾河流域土地利用类型时空变化分析[J].农业工程学报,2016,32(7):230-236.
[39]张国坤, 邓 伟, 张洪岩,等. 新开河流域土地利用格局变化图谱分析[J]. 地理学报, 2010, 65(9):1111-1120.
基金
国家自然科学基金项目(41771115);国家重点基础研究发展计划项目(2015CB452706);2015年贵州省“千”层次创新型人才资助项目(111-0317003);中国科学院陆地表层格局与模拟重点实验室开放基金项目(GJ-2015-03);贵州省科技计划项目(黔科合平台人才[2017]5726号)