沉水植物的大规模生长会给河道、湖泊和水库发挥水利功能带来严重危害,伊乐藻便是其中一种在全球广泛传播,并给世界多国带来经济和生态等多种不利影响的沉水植物。2017年和2019年丹江口—王甫洲区间河道爆发伊乐藻“草灾”,严重影响了王甫洲水电站的发电、航运、供水等功能发挥,并对泄洪以及区域水质和水生态安全造成威胁。调查分析了伊乐藻生长时空特征、灾害原因及其影响,基于国内外沉水植物治理措施,结合丹江口—王甫洲区间河道伊乐藻生长特性以及水生态环境保护等方面的要求,提出了生态调度和局部地形改造的物理治理方法,塑造不适宜伊乐藻生长的地形和水动力环境,从而在根本上抑制伊乐藻的生长繁殖,破解伊乐藻“草灾”难题。
Abstract
The massive growth of submerged plants can cause serious harm to the water conservancy functions of rivers, lakes, and reservoirs. One such plant is Elodea nuttallii, which is widely spread around the world and has adverse economic and ecological effects on many countries. In 2017 and 2019, Elodea nuttallii caused a disaster in the Danjiangkou-Wangfuzhou riverway in the middle and lower Hanjiang River, severely affecting the power generation, shipping, and water supply of the Wangfuzhou hydropower station. It also posed a threat to flood discharge, regional water quality, and water ecological security. We investigated the spatiotemporal characteristics of Elodea nuttallii growth and analyzed the cause of the disaster and its impact. In line with the requirements of water eco-environmental protection and the growth characteristics of Elodea nuttallii in the Danjiangkou-Wangfuzhou reach, we proposed two physical control methods based on control measures for submerged plants worldwide. The proposed methods involve ecological scheduling and local terrain modification to create an unsuitable terrain and hydrodynamic environment for Elodea nuttallii, thereby fundamentally inhibiting its growth and reproduction.
关键词
伊乐藻 /
草灾 /
治理措施 /
生态调度 /
局部地形改造 /
水动力环境 /
汉江中下游 /
水生态环境保护
Key words
Elodea nuttallii /
disaster /
control measures /
ecological scheduling /
local terrain modification /
hydrodynamic environment /
middle and lower Hanjiang River /
eco-environmental protection
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] VAN DONK E,VAN DE BUND W J. Impact of Submerged Macrophytes Including Charophytes on Phyto-and Zooplankton Communities: Allelopathy Versus other Mechanisms[J].Aquatic Botany,2002,72(3/4):261-274.
[2] BAKKER E S, SARNEEL J M, GULATI R D, et al. Restoring Macrophyte Diversity in Shallow Temperate Lakes: Biotic Versus Abiotic Constraints[J]. Hydrobiologia, 2013, 710(1): 23-37.
[3] 黄 蓉, 杨文斌, 程俊杰, 等. 菹草和伊乐藻对水-沉积物界面磷迁移转化的影响[J]. 环境科学研究, 2019, 32(7): 1204-1212.
[4] ZEHNSDORF A, HUSSNER A, EISMANN F, et al. Management Options of Invasive Elodea Nuttallii and Elodea Canadensis[J]. Limnologica, 2015, 51: 110-117.
[5] 陈卫东. 淠河总干渠渠道水草治理探讨[J]. 中国水利, 2016(3): 19-20.
[6] HUSSNER A, STIERS I, VERHOFSTAD M J J M, et al. Management and Control Methods of Invasive Alien Freshwater Aquatic Plants: A Review[J]. Aquatic Botany, 2017, 136: 112-137.
[7] SCHWOERER T, MORTON J M. Human Dimensions of Aquatic Invasive Species in Alaska: Lessons Learned while Integrating Economics, Management, and Biology to Incentivize Early Detection and Rapid Response[M]. New York: Nova Science Publishers, Inc., 2018: 1-46.
[8] DI NINO F, THIBAUT G, MULLER S. Response of Elodea Nuttallii (Planch.) H. St. John to Manual Harvesting in the North-East of France[J].Hydrobiologia, 2005, 551(1): 147-157.
[9] MJELDE M,LOMBARDO P,BERGE D,et al. Mass Invasion of Non-native Elodea canadensis Michx. in a Large, Clear-water, Species-rich Norwegian Lake-impact on Macrophyte Biodiversity[J]. Annales de Limnologie-International Journal of Limnology,2012,48(2):225-240.
[10] 长江流域水环境监测中心. 王甫洲水库沉水植物生态调查与防控措施研究[R].武汉:长江流域水环境监测中心, 2019.
[11] 长江水资源保护科学研究所. 丹江口—王甫洲区间生态调度控制水草效果评估研究[R].武汉:长江水资源保护科学研究所, 2020.
[12] 文 威, 李 涛, 韩 璐. 汉江中下游干流水电梯级开发的水环境影响分析[J]. 环境工程技术学报, 2016, 6(3): 259-265.
[13] CUTHBERT R N, CRANE K, DICK J T A, et al. Die Hard: Impact of Aquatic Disinfectants on the Survival and Viability of Invasive Elodea Nuttallii[J]. Aquatic Botany, 2019, 154: 11-17.
[14] ABERNETHY V J, SABBATINI M R, MURPHY K J. Response of Elodea Canadensis Michx, and Myriophyllum Spicatum L. to Shade, Cutting and Competition in Experimental Culture[J].Hydrobiologia, 1996, 340(1/2/3): 219-224.
[15] 林 超,韩翠敏,潘 辉,等. 不同光照条件对8种沉水植物生长的影响[J]. 环境工程,2016,34(7):16-19.
[16] 鄢文皓,王会会,李前正,等.影响沉水植物恢复的环境阈值研究进展[J].生态科学,2020,39(5):240-247.
[17] THIEBAUT G, MULLER S. Linking Phosphorus Pools of Water, Sediment and Macrophytes in Running Waters[J]. Annales de Limnologie-International Journal of Limnology, 2003, 39(4): 307-316.
[18] 黄 瑾, 宋玉芝, 秦伯强. 磷对太湖沉水植物伊乐藻的影响[J]. 南京信息工程大学学报(自然科学版), 2009, 1(3): 233-237.
[19] 胡 坤. 水中硝态氮加富对伊乐藻生长的影响[D]. 广州: 暨南大学, 2011.
[20] 王 华, 逄 勇, 刘申宝, 等. 沉水植物生长影响因子研究进展[J]. 生态学报, 2008, 28(8): 3958-3968.
[21] MADSEN J D, CHAMBERS P A, JAMES W F, et al. The Interaction between Water Movement, Sediment Dynamics and Submersed Macrophytes[J]. Hydrobiologia, 2001, 444(1): 71-84.
[22] 魏 华, 成水平, 吴振斌. 水文特征对水生植物的影响[J]. 现代农业科技, 2010(7): 13-16.
[23] HEIDBÜCHEL P, HUSSNER A. Falling into Pieces: In Situ Fragmentation Rates of Submerged Aquatic Plants and the Influence of Discharge in Lowland Streams[J]. Aquatic Botany, 2020, 160: 103164.
[24] 郝贝贝. 浅水湖泊沉水植物建构功能及其对升温的响应[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2018.
[25] 吴英海,卞国建,方建德,等. 环境因子对伊乐藻光合作用影响的试验研究[J]. 四川环境,2009,28(6):1-4, 14.
[26] 王晓平, 王玉兵, 杨桂军, 等. 不同鱼类对沉水植物生长的影响[J]. 湖泊科学, 2016, 28(6): 1354-1360.
[27] 丁洪亮,程孟孟,胡永光,等.丹江口—王甫洲区间生态调度认识与实践[J].人民长江,2022,53(3):74-78.
[28] 曹圣洁, 夏 瑞, 张 远, 等. 南水北调中线工程调水前后汉江下游水生态环境特征与响应规律识别[J]. 环境科学研究, 2020, 33(6): 1431-1439.
[29] CHAMPION P D, CLAYTON J S, HOFSTRA D E. Nipping Aquatic Plant Invasions in the Bud: Weed Risk Assessment and the Trade[J]. Hydrobiologia, 2010, 656(1): 167-172.
[30] VERBRUGGE L, VAN DER VELDE G, HENDRIKS J, et al. Risk Classifications of Aquatic Non-native Species: Application of Contemporary European Assessment Protocols in Different Biogeographical Settings[J]. Aquatic Invasions, 2012, 7(1): 49-58.
[31] HOFFMANN M A, BENAVENT GONZLEZ A, RAEDER U, et al. Experimental Weed Control of Najas Marina SSP. Intermedia and Elodea Nuttallii in Lakes Using Biodegradable Jute Matting[J]. Journal of Limnology, 2013, 72(3): 39.