汉江中下游丰枯水期水质时空变化特征

张胜, 林莉, 王珍, 潘雄, 刘敏, 董磊, 陶晶祥

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (8) : 47-53.

PDF(4788 KB)
PDF(4788 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (8) : 47-53. DOI: 10.11988/ckyyb.20200610
水环境与水生态

汉江中下游丰枯水期水质时空变化特征

  • 张胜1,2, 林莉1,2, 王珍1,2, 潘雄1,2, 刘敏1,2, 董磊1,2, 陶晶祥1,2
作者信息 +

Spatio-temporal Variation of Water Quality in Middle-lower Hanjiang River

  • ZHANG Sheng1,2, LIN Li1,2, WANG Zhen1,2, PAN Xiong1,2, LIU Min1,2, DONG Lei1,2, TAO Jing-xiang1,2
Author information +
文章历史 +

摘要

为探究汉江中下游丰、枯水期水质时空变化特征,于2019年6月丰水期和2020年1月枯水期对汉江中下游(丹江口-武汉段)开展全面调查,布设了18个干流采样断面和2个支流采样断面进行采样和分析,并采用综合污染指数法和综合营养状态指数评价法对水质进行评价。研究结果表明:汉江中下游干流综合污染指数在丰、枯水期整体表现为无显著性差异,但从各断面比较来看,大多数断面丰水期污染程度大于枯水期,空间上丰、枯水期沿程各断面变化趋势相似,污染较大的断面分布在襄阳、汉川和武汉段;主要污染因子为总氮(TN)、总磷(TP)、氨氮(NH3-N),其中TN浓度在丰、枯水期各断面均超过地表水Ⅱ类标准,且丰水期显著大于枯水期,TP浓度多数断面丰水期大于枯水期,超过Ⅱ类水标准限值断面的比例为27.8%,NH3-N在枯水期均处于Ⅱ类水标准限值内,仅在丰水期个别断面出现超标现象。通过综合营养状态评价可知,汉江中下游综合营养状态指数处于中营养到轻度富营养状态,整体上呈沿程递增趋势,时间上表现为丰、枯水期无显著性差异,但枯水期综合营养状态指数波动更大。对污染成因进行分析,汉江中下游水质主要受点源、非点源污染和支流汇入,以及水利工程等的影响。研究成果可为汉江中下游水资源保护和可持续发展提供科学依据。

Abstract

In the aim of exploring the characteristics of the spatio-temporal changes of water quality in middle-lower Hanjiang River in wet season and dry season, a comprehensive survey was carried out on the middle-lower Hanjiang River (Danjiangkou-Wuhan reach) during the wet season in June 2019 and the dry season in January 2020. Eighteen sampling sections in the main stream and two sampling sections in the tributaries were arranged. The water quality was evaluated by using the overall pollution index and the overall trophic level index. The results indicated that the overall pollution index of water in the mainstream of the middle-lower Hanjiang River had no significant difference between wet season and dry season; in sectional scale, yet, the pollution of most sampling sections in wet season was more severe than that in dry season. Spatially, the change trends along the river during wet season and dry season were similar. Sections in Xiangyang, Hanchuan, and Wuhan were subjected to severe pollution, mainly total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH3-N), among which TN concentration exceeded the limit of class II standard (GB 3838-2002) in all sections in both wet season and dry season, apparently larger in wet season, and TP concentration of most sections in wet season was greater than that in dry season, with 27.8% sections exceeding the limit of class II standard, and NH3-N concentration of all sections were below the limit of class II standard in dry season, while exceeding the limit only in a few sections in wet season. Moreover, the overall trophic level in middle-lower Hanjiang River presented an increasing trend along the river, ranging from moderate nutrition to mild eutrophication. Except for larger fluctuations in dry season, the overall trophic level index saw no significant difference between wet season and dry season. The water quality in the middle-lower Hanjiang River was mainly affected by point source pollution and non-point source pollution, the confluence of tributaries, and water conservancy projects. The research findings offer scientific basis for water resources protection and sustainable development in the middle-lower Hanjiang River.

关键词

汉江中下游 / 水质 / 丰水期 / 枯水期 / 时空变化

Key words

middle-lower Hanjiang River / water quality / wet season / dry season / spatio-temporal variation

引用本文

导出引用
张胜, 林莉, 王珍, 潘雄, 刘敏, 董磊, 陶晶祥. 汉江中下游丰枯水期水质时空变化特征[J]. 长江科学院院报. 2021, 38(8): 47-53 https://doi.org/10.11988/ckyyb.20200610
ZHANG Sheng, LIN Li, WANG Zhen, PAN Xiong, LIU Min, DONG Lei, TAO Jing-xiang. Spatio-temporal Variation of Water Quality in Middle-lower Hanjiang River[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(8): 47-53 https://doi.org/10.11988/ckyyb.20200610
中图分类号: X13    X52    X82   

参考文献

[1] 卢金友, 林 莉. 汉江生态经济带水生态环境问题及对策[J]. 环境科学研究, 2020, 33(5):1179-1186.
[2] XIN Xiao-kang, ZHANG Hong, LEI Pei, et al. Algal Blooms in the Middle and Lower Han River: Characteristics, Early Warning and Prevention[J]. Science of the Total Environment, 2020, 706: 135293.
[3] WANG Yong-gui, ZHANG Wan-shun, ZHAO Yan-xin,et al. Modelling Water Quality and Quantity with the Influence of Inter-basin Water Diversion Projects and Cascade Reservoirs in the Middle-lower Hanjiang River[J]. Journal of Hydrology, 2016, 541: 1348-1362.
[4] 吴卫菊; 陈晓飞. 汉江中下游冬春季硅藻水华成因研究[J]. 环境科学与技术, 2019, 42(9): 55-60.
[5] 董瑞瑞, 陈和春,王继保,等.汉江中下游突发性水污染事故预测模型研究[J]. 水力发电, 2017, 43(12): 1-5.
[6] 张逸飞, 张中旺, 龚佑海. 汉江襄阳段水质现状及保护对策研究[J]. 农村经济与科技, 2016, 27(9):70-72.
[7] 许 策, 李 晔,束继年,等. 汉江流域荆门段面源污染负荷时空分布与污染现状评价[J]. 水土保持通报, 2017, 37(4): 63-68.
[8] 柯 晶, 李 晔, 袁 江,等. 基于WASP水质模型的汉江中下游调水前后水质模拟研究[J]. 安徽农业科学, 2015(25):253-256.
[9] LI Bai-shan, ZHOU Pei-jiang, WANG Xu-yuan, et al. Opportunities and Eco-Environmental Influence of Cascade Hydropower Development and Water Diversion Projects in Hanjiang River Basin[J]. Journal of the Geological Society of India, 2013, 82(6): 692-700.
[10]国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
[11]孙 涛,张妙仙,李苗苗,等. 基于对应分析法和综合污染指数法的水质评价[J]. 环境科学与技术, 2014, 37(4): 185-190.
[12]GB 3838—2002,地表水环境质量标准 [S].北京:中国环境科学出版社,2002
[13]王 灿, 袁 婷, 张建利, 等. 贵州草海水质时空变化和水体营养状况[J]. 长江科学院院报, 2019, 36(6):14-19.
[14]王 盼, 古 琴, 彭 颖,等. 湖北省汉江中下游流域水污染物排放标准研究[J]. 环境科学与技术, 2018,41(增刊2):197-204.
[15]辛小康, 王英才, 胡 圣,等.2018年汉江下游硅藻水华成因分析[J]. 水电能源科学, 2019, 37(3):25-28.
[16]王 俊, 汪金成, 徐剑秋,等. 2018年汉江中下游水华成因分析与治理对策[J]. 人民长江, 2018, 49(17):11-15.
[17]湖北省统计局.湖北统计年鉴(2016)[M]. 北京:中国统计出版社,2016.
[18]王燚成, 肖 飞,冯 奇,等. 汉江中下游消落区及水域面积时空变化分析[J]. 长江流域资源与环境, 2019, 28(11): 2727-2734.
[19]张中旺,陈 尧,徐存刚. 汉江生态经济带水环境保护问题及对策[J]. 人民珠江, 2020, 41(2): 50-55, 66.
[20]雷 沛, 曾祉祥, 张 洪,等. 汉江襄阳段主要入江支流沉积物营养盐和重金属风险特征研究[J]. 环境科学学报, 2015,35(5):119-127.
[21]谢 平, 夏 军, 窦 明,等. 南水北调中线工程对汉江中下游水华的影响及对策研究(Ⅰ):汉江水华发生的关键因子分析[J]. 自然资源学报, 2004, 19(4):418-423.

基金

中央级公益性科研院所基本科研业务费专项资金项目(CKSF2019380/SH,CKSF2017062/SH)

PDF(4788 KB)

Accesses

Citation

Detail

段落导航
相关文章

/