库区洲滩生境改造方案优选——以王甫洲水库为例

单敏尔, 周银军, 郭超, 刘鑫, 孙贵洲, 李志晶

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (1) : 18-25.

PDF(6219 KB)
PDF(6219 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (1) : 18-25. DOI: 10.11988/ckyyb.20221186
河湖保护与治理

库区洲滩生境改造方案优选——以王甫洲水库为例

  • 单敏尔1,2, 周银军1, 郭超1, 刘鑫3, 孙贵洲1, 李志晶1
作者信息 +

Optimization of Habitat Renovation Plan for Reservoir Beach: A Case Study on Wangfuzhou Reservoir

  • SHAN Min-er1,2, ZHOU Yin-jun1, GUO Chao1, LIU Xin3, SUN Gui-zhou1, LI Zhi-jing1
Author information +
文章历史 +

摘要

低水头梯级水库中流速较缓且水深较小而导致水草灾害发生是近些年水库管理中出现的新问题。为在发生伊乐藻灾害的王甫洲库区通过实施局部地形改造而塑造不利于伊乐藻生长的水文环境,并能对每一改造方案实施前后水动力强度的变化进行定量评价,同时综合考虑各改造方案在每一区域的水动力提升效果、对环境的影响和改造效益,选取各区域最优改造方案,提出了水动力提升率概念用以描述改造前后水动力强度的变化,并建立了基于熵权-TOPSIS的地形改造方案优选模型对各区域的每一方案进行评价优选,取得的主要结论如下:①在周期流量下,在区域A改造方案1水动力提升率仅为5.16%,远不及方案2和方案3的59.15%和63.62%;在区域B和区域C,方案1水动力强度出现减弱,方案2和方案3对区域B的水动力提升率分别为16.02%和20.19%,对区域C的水动力提升率分别为45.47%和51.99%,均较为接近。②熵权法得到3个区域各指标的权重均为改造效益>平均改造深度>水动力提升率。若综合考虑水动力提升率、对环境的影响和改造效益,TOPSIS模型计算的综合评价指数均为方案3>方案2>方案1,方案3均是每一区域综合评价下的最优改造方案。

Abstract

In recent years, aquatic plant disasters in cascade reservoirs with low head due to slow flow velocity and small water depth has emerged as a new problem in reservoir management. To tackle the Elodea canadensis disaster in the Wangfuzhou Reservoir area, an approach involving local topographic transformation was implemented. The aim was to create an unfavorable hydrological environment for the growth of Elodea. We propose a concept of hydrodynamic improvement rate to quantitatively describe the changes in hydrodynamic strength before and after transformation. Furthermore, we established an entropy-TOPSIS model to select the optimum plan for each area in comprehensive consideration of the hydrodynamic improvement effect, the environmental impact, and transformation benefits. The major findings are as follows: in area A, under periodic flow rate, modification scheme 1 exhibits a meager hydrodynamic improvement rate of only 5.16%, which is much lower than the rates achieved by scheme 2 (59.15%) and scheme 3 (63.62%). For area B and area C, scheme 1 weakens the hydrodynamic strength, while scheme 2 and scheme 3 yield improvement rates of 16.02% and 20.19% for area B, and 45.47% and 51.99% for area C, respectively. The improvement rates of both scheme 2 and scheme 3 are relatively close. By using the entropy weight method, we obtained the weights of each index in the three areas, ranking from transformation benefit to average transformation depth and hydrodynamic improvement rate in descending order. Taking into account the overall hydrodynamic improvement rate, environmental impact, and transformation benefit, the comprehensive evaluation index calculated using the TOPSIS model suggests that Scheme 3 is superior to Scheme 2 and Scheme 1. Thus, Scheme 3 is identified as the optimal transformation scheme for each area.

关键词

库区洲滩生境改造 / 水动力提升率 / 熵权 / TOPSIS模型 / 伊乐藻 / 王甫洲水库

Key words

habitat renovation of reservoir beach / hydrodynamic improvement rate / entropy weight / TOPSIS model / Elodea canadensis / Wangfuzhou Reservoir

引用本文

导出引用
单敏尔, 周银军, 郭超, 刘鑫, 孙贵洲, 李志晶. 库区洲滩生境改造方案优选——以王甫洲水库为例[J]. 长江科学院院报. 2024, 41(1): 18-25 https://doi.org/10.11988/ckyyb.20221186
SHAN Min-er, ZHOU Yin-jun, GUO Chao, LIU Xin, SUN Gui-zhou, LI Zhi-jing. Optimization of Habitat Renovation Plan for Reservoir Beach: A Case Study on Wangfuzhou Reservoir[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(1): 18-25 https://doi.org/10.11988/ckyyb.20221186
中图分类号: X43   

参考文献

[1] 王 珍. 汉江中下游水质沿程变化规律及污染成因分析[D]. 武汉: 长江科学院, 2021. (WANG Zhen. Change Rule along the Way and Pollution Cause Analysis of Water Quality of the Middle and Lower Reaches of Hanjiang River[D]. Wuhan: Changjiang River Scientiffic Research Institute, 2021. (in Chinese))
[2] 长江水资源保护科学研究所.丹江口-王甫洲区间水草防治效果评估研究[R].武汉:长江水资源保护科学研究所,2021. (Changjiang Water Resources Protection Institute. Assessment of Aquatic Plant Disaster Prevention and Control Effects in the Reach Between Danjiangkou and Wangfuzhou[R]. Wuhan: Changjiang Water Resources Protection Institute, 2021. (in Chinese))
[3] 朱恩合, 李宝艳, 李君丽. 尔王庄水库水草繁殖危害及应对措施[J]. 水科学与工程技术, 2010(5): 55-56. (ZHU En-he, LI Bao-yan, LI Jun-li. The Propagation Hazards of Waterweed and Its Countermeasures in the Erwangzhuang Reservoir[J]. Water Sciences and Engineering Technology, 2010(5): 55-56.(in Chinese))
[4] 高学平, 吕建璋, 孙博闻, 等. 含植物河道等效床面阻力试验研究[J]. 水利学报, 2021, 52(9): 1024-1035, 1046. (GAO Xue-ping, LYU Jian-zhang, SUN Bo-wen, et al. Experimental Study on Equivalent Bed Resistance of River Containing Vegetation[J]. Journal of Hydraulic Engineering, 2021, 52(9): 1024-1035, 1046.(in Chinese))
[5] 长江科学院.王甫洲水利枢纽库区淤积效应分析及生态治理研究建议书[R].武汉:长江科学院,2021.(Changjiang River Scientific Research Institute. Deposition Effects in Wangfuzhou Reservoir Area and Ecological Restoration Suggestions[R]. Wuhan: Changjiang River Scientific Research Institute, 2021. (in Chinese))
[6] 张 睿, 张利升, 饶光辉. 丹江口水利枢纽综合调度研究[J]. 人民长江, 2019, 50(9): 214-220. (ZHANG Rui, ZHANG Li-sheng, RAO Guang-hui. Integrated Dispatching of Danjiangkou Hydro-complex[J]. Yangtze River, 2019, 50(9): 214-220.(in Chinese))
[7] 王若晨, 欧阳硕. 调水背景下丹江口水库优化调度与效益分析[J]. 长江科学院院报, 2016, 33(12): 17-21. (WANG Ruo-chen, OUYANG Shuo. Benefit Analysis and Optimal Scheduling of Danjiangkou Reservoir in the Presence of the South-to-North Water Transfer Project[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(12): 17-21.(in Chinese))
[8] 洪兴骏, 余蔚卿, 任金秋, 等. 丹江口水利枢纽汛期运行水位优化研究与应用[J]. 人民长江, 2022, 53(2): 27-34. (HONG Xing-jun, YU Wei-qing, REN Jin-qiu, et al. Research and Application on Optimization of Operating Water Level of Danjiangkou Reservoir during Flood Season[J]. Yangtze River, 2022, 53(2): 27-34.(in Chinese))
[9] 彭 涛, 严 浩, 郭家力, 等. 丹江口水库运用对下游水文情势影响研究[J]. 人民长江, 2016, 47(6): 22-26, 47. (PENG Tao, YAN Hao, GUO Jia-li, et al. Impact of Danjiangkou Reservoir Operation on Downstream Hydrological Regime[J]. Yangtze River, 2016, 47(6): 22-26, 47.(in Chinese))
[10] 黄金凤, 夏 军, 佘敦先, 等. 丹江口水库对汉江下游水文过程的影响[J]. 武汉大学学报(工学版), 2015, 48(6): 782-788. (HUANG Jin-feng, XIA Jun, SHE Dun-xian, et al. Analysis of Influence of Danjiangkou Reservoir on Hydrological Process of Lower Reach of Hanjiang River[J]. Engineering Journal of Wuhan University, 2015, 48(6): 782-788.(in Chinese))
[11] 长江水资源保护科学研究所.丹江口-王甫洲区间生态调度控制水草效果评估研究[R].武汉:长江水资源保护科学研究所,2020.(Changjiang Water Resources Protection Institute. Assessment of Aquatic Plant Disaster Prevention and Control Effects through Ecological Scheduling in the Reach Between Danjiangkou and Wangfuzhou[R]. Wuhan: Changjiang Water Resources Protection Institute, 2020. (in Chinese))
[12] HUSSNER A, STIERS I, VERHOFSTAD M J J M, et al. Management and Control Methods of Invasive Alien Freshwater Aquatic Plants: A Review[J]. Aquatic Botany, 2017, 136: 112-137.
[13] 田 晶, 郭生练, 刘德地, 等. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. (TIAN Jing, GUO Sheng-lian, LIU De-di, et al. Impacts of Climate and Land Use/Cover Changes on Runoff in the Hanjiang River Basin[J]. Acta Geographica Sinica, 2020, 75(11): 2307-2318.(in Chinese))
[14] 徐 帅, 张 凯, 赵仕沛. 基于MIKE 21 FM模型的地表水影响预测[J]. 环境科学与技术, 2015, 38(增刊1): 386-390. (XU Shuai, ZHANG Kai, ZHAO Shi-pei. Prediction Methods Analysis of Surface Water Quality Based on the MIKE 21 FM Numerical Model[J]. Environmental Science & Technology, 2015, 38(S1): 386-390.(in Chinese))
[15] 张 虎, 徐学军, 代 涛. MIKE21 FM在引江济巢工程规划中的应用[J]. 水电能源科学, 2016, 34(9): 103-106, 93. (ZHANG Hu, XU Xue-jun, DAI Tao. Application of MIKE21FM in Water Diversion Project from Yangtze River to Chaohu Lake[J]. Water Resources and Power, 2016, 34(9): 103-106, 93.(in Chinese))
[16] 熊建清, 窦 燕, 尚晓燕. 基于熵权的施工导流方案多目标评价方法[J]. 人民黄河, 2011, 33(2): 105-106. (XIONG Jian-qing, DOU Yan, SHANG Xiao-yan. Multi-objective Evaluation Method of Construction Diversion Scheme Based on Entropy Weight[J]. Yellow River, 2011, 33(2): 105-106.(in Chinese))
[17] 刘 亮, 何建新, 高 强. 基于熵权的TOPSIS模型在城市供水方案优选中的应用[J]. 水资源与水工程学报, 2010, 21(3): 62-65. (LIU Liang, HE Jian-xin, GAO Qiang. Application of the TOPSIS Model Based on Entropy Weights to the Optimization of Water Supply Scheme[J]. Journal of Water Resources and Water Engineering, 2010, 21(3): 62-65.(in Chinese))
[18] 吴扬东, 袁庆霓, 周 民. 基于TOPSIS-熵的计量泵设计方案优选[J]. 机械设计与制造, 2016(1): 66-68. (WU Yang-dong, YUAN Qing-ni, ZHOU Min. Design Scheme Optimization of Metering Pump Based on TOPSIS and Entropy Principle[J]. Machinery Design & Manufacture, 2016(1): 66-68.(in Chinese))
[19] 张先起, 梁 川, 刘慧卿. 基于熵权的属性识别模型在地下水水质综合评价中的应用[J]. 四川大学学报(工程科学版), 2005, 37(3): 28-31. (ZHANG Xian-qi, LIANG Chuan, LIU Hui-qing. Application of Attribute Recognition Model Based on Coefficient of Entropy to Comprehensive Evaluation of Groundwater Quality[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(3): 28-31.(in Chinese))
[20] 苟廷佳, 陆威文. 基于组合赋权TOPSIS模型的生态文明建设评价: 以青海省为例[J]. 统计与决策, 2020, 36(24): 57-60. (GOU Ting-jia, LU Wei-wen. Evaluation of Ecological Civilization Construction Based on Combined Weighted TOPSIS Model—A Case Study of Qinghai Province[J]. Statistics & Decision, 2020, 36(24): 57-60.(in Chinese))
[21] 刘军号, 方 崇. 施工导流方案优选的熵TOPSIS决策模型[J]. 华北水利水电学院学报, 2011, 32(2): 37-39. (LIU Jun-hao, FANG Chong. TOPSIS Decision Model Based on Entropy of Optimization of Construction Diversion Schemes[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2011, 32(2): 37-39.(in Chinese))
[22] 徐存东, 翟东辉, 张 硕, 等. 改进的TOPSIS综合评价模型在河道整治方案优选中的应用[J]. 河海大学学报(自然科学版), 2013, 41(3): 222-228. (XU Cun-dong, ZHAI Dong-hui, ZHANG Shuo, et al. Application of Improved TOPSIS Comprehensive Evaluation Model to Optimization of River Regulation Schemes[J]. Journal of Hohai University (Natural Sciences), 2013, 41(3): 222-228.(in Chinese))
[23] 舒 欢, 刘文娜. 基于组合赋权—TOPSIS模型的水利工程建设方案优选决策方法[J]. 工程管理学报, 2013, 27(4): 83-86. (SHU Huan, LIU Wen-na. Hydraulic Engineering Construction Program Optimal Choice Based on Empowerment Combination TOPSIS Model[J]. Journal of Engineering Management, 2013, 27(4): 83-86.(in Chinese))
[24] 田林钢, 靳聪聪. 基于改进的熵权-TOPSIS法的震损水库最佳除险加固方案选择[J]. 水电能源科学, 2013, 31(9): 68-71. (TIAN Lin-gang, JIN Cong-cong. Optimization Selection of Earthquake Damaged Reservoir Reinforcement Planning Based on Improved Entropy Weight-TOPSIS[J]. Water Resources and Power, 2013, 31(9): 68-71.(in Chinese))
[25] 刘秋常, 韩 涵, 李慧敏, 等. 基于熵权TOPSIS法的海绵城市建设绩效评价: 以河南省鹤壁市为例[J]. 人民长江, 2017, 48(14): 23-26. (LIU Qiu-chang, HAN Han, LI Hui-min, et al. Evaluation of Sponge City Construction Based on Entropy Weight-TOPSIS: Case of Hebi City, Henan Province[J]. Yangtze River, 2017, 48(14): 23-26.(in Chinese))

基金

中央级公益性科研院所基本科研业务费项目(CKSF2021530/HL,CKSF2021743/HL)

PDF(6219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/